
Chapter 10

{ Empty }

Chapter 11

Curve Fitting

11.1 Polynomial Least-Squares Curve Fit

A. Purpose
This subroutine determines a polynomial that fits a given discrete set of data in the sense of
minimizing the weighted sum of squares of residuals. The fitted polynomial can be constrained
to match some data points exactly by appropriate setting of the a priori standard deviations of
the data errors.

Auxiliary subroutines, described in Chapter 11.2, may be used to evaluate, differentiate, or
integrate a polynomial produced by this fitting procedure.

B. Usage

Program Prototype, Single Precision
INTEGERM, NMAX, NDEG
REAL X(≥ M), Y(≥ M), SD(≥ M or = 1), P(≥ NMAX+3), SIGFAC, W((NMAX+3)

* (NMAX+3))
LOGICAL SEEKN, COMTRN, CHBBAS

Assign values to M, X(), Y(), SD(), NMAX, SEEKN, COMTRN and CHBBAS. If COMTRN =
.FALSE. values must also be assigned to P(1) and P(2).

CALL SPFIT (M, X, Y, SD, NMAX, SEEKN, COMTRN, CHBBAS, P, NDEG, SIGFAC, W)

Following the CALL to SPFIT, one may wish to use SCPVAL or SMPVAL to evaluate the fitted
polynomial at specific points, SCPDRV or SMPDRV to differentiate the polynomial, or SCPINT
or SMPINT to integrate the polynomial. See Chapter 11.2 for descriptions of these
subprograms.

Argument Definitions
M [in] Number of data points.

X() [in] Array of values of the independent variable. Values need not be ordered and
may be repeated.

Y() [in] Array of values of the dependent variable indexed to correspond to the X()
values.

SD() [in] If SD(1) > 0., each SD(I) must be positive and will be assumed to be the user's a
priori estimate of the standard deviation of the uncertainty (observational errors, etc.) in
the corresponding data value Y(I).

If SD(1) < 0., |SD(1)| will be used as the a priori standard deviation of each data value
Y(I). In this case the array SD() can be dimensioned SD(1) since locations following SD(1)
will not be used.

NMAX [in] Specifies the maximum degree polynomial to be considered. Require NMAX ≥ 0.
If NMAX > M-1 the subroutine will function as though NMAX = M-1.

SEEKN [in] If SEEKN = .TRUE. the subroutine will determine the optimum value of NDEG ≤
NMAX in the sense described below in Section D.

If SEEKN = .FALSE., the subroutine will set NDEG = NMAX unless this is a singular or
nearly singular problem, in which case NDEG will be reduced as necessary.

Polynomial Least-Squares Curve Fit 11.1-1

COMTRN[in] If COMTRN = .TRUE., the subroutine will determine the transformation
parameters P(1) and P(2) as described in Section D.

If COMTRN = .FALSE., the subroutine will use the values of P(1) and P(2) that have been
set by the user.

CHBBAS [in] If CHBBAS = .TRUE., the subroutine will use the Chebyshev basis. If CHBBAS
= .FALSE., the subroutine will use the monomial basis. The Chebyshev basis is
recommended for better numerical stability, particularly for NMAX greater than about six.

P() [inout] Parameter vector defining a polynomial according to Eqs. (1) and (2) or (3)
and (4). Values of P(1) and P(2) may either be set by the user, or by the subroutine,
depending upon the value of COMTRN. Values of P(J+3), J=0, ..., NMAX will be
computed by the subroutine. If NDEG < NMAX, the subroutine will set P(I+3)=0, for
I=NDEG+1, ..., NMAX.

NDEG [out] Set by the subroutine to indicate the degree of the fitted polynomial. On return
NDEG will satisfy 0 ≤ NDEG ≤ NMAX if the computation was successful and will be set
to -1 if an error occurred.

SIGFAC [out] Number computed by the subroutine. See discussion of SIGFAC in Sections C
and D following.

W() [scratch] Array of working storage.

Modifications for Double Precision
For double precision usage change the REAL type statements to DOUBLE PRECISION and
change the subroutine name from SPFIT to DPFIT. Change the names of the auxiliary
subroutines mentioned above to DCPVAL, DMPVAL, DCPDRV, DMPDRV, DCPINT, and
DMPINT, respectively.

C. Examples and Remarks
Example: Given a set of 12 data pairs (x

i
, y

i
), compute the weighted least squares polynomial

fit to these data letting the subroutine determine the preferred polynomial degree, not to exceed
8. After computing the least squares polynomial p(x), compute and tabulate the quantities x

i
, y

i
,

p(x
i
), and r

i
 = y

i
 - p(x

i
).

The program DRSPFIT carries out this computation using subroutines SPFIT and SCPVAL. The
output is shown in ODSPFIT. Note that the value of NDEG selected by the subroutine is 7.

Transformation of the Independent Variable
For the best numerical accuracy, both in determining the best fitting polynomial and in the later
evaluation of the polynomial, it is generally advisable to use transformation parameters P(1)
and P(2) causing the transformed variable u of Eqs. (1) or (3) to range from -1 to +1. This
condition can be obtained by setting COMTRN = .TRUE.

When fitting with polynomials of degree higher than about six, the Chebyshev basis generally
gives better numerical accuracy than the monomial basis. To obtain the potential numerical
advantages of the Chebyshev basis it is essential to cause the transformed variable, u, to range
from -1 to +1.

To force an identity transformation (i.e., effectively no transformation) of the independent
variable, set COMTRN = .FALSE., P(1) = 0., and P(2) = 1.

Interpretation of SIGFAC

11.1-2 Polynomial Least-Squares Curve Fit

If the user has set all SD(I) = 1.0, or equivalently, set SD(1) = -1.0, SIGFAC can be interpreted
as an a posteriori estimate of the standard deviation of the error in each Y(I) value. More
generally, whatever values the user has assigned to the SD(I)'s, the a posteriori estimate of the
standard deviation of the error in Y(I) is SIGFAC*SD(I).

Equality Constraints
If the user wishes the fitted polynomial to agree to machine accuracy with one or more of the
data points, this can be accomplished by setting the SD() value for such points much smaller
than for the other points.

Let ε denote the machine precision, i.e., ε = R1MACH(3) in S.P. or ε = D1MACH(3) in D.P. For
some value of c in the range 0.5 ≤ c ≤ 0.75, we suggest setting SD(I) = εc for the points at which
an exact fit is desired and SD(I) = 1.0 for all other points. For example if ε = 10-8 set SD(I) in
the range 10-4 through 10-6 for the exact fit points.

Using c < 0.5 may not produce sufficiently small residuals at the desired points of exact fit,
whereas setting c > 0.75 may trip the near-singularity test in these subroutines leading to an
unwanted alteration of the problem.

Note that it is not mathematically reasonable to attempt to force exact fits at more than
NMAX+1 points.

D. Functional Description
The user provides data (x

i
, y

i
, s

i
), for i=1, ..., M, and an integer NMAX. If SEEKN = .FALSE.

and the problem is not rank-deficient or extremely ill-conditioned, the subroutine simply
determines the polynomial p

n
(x) of degree n=NMAX that minimizes the following weighted sum

of squares of residuals:

p2

n
 =

M

3
i = 1

y
i
− p

n
(x

i
)

s
i

 2

.

The subroutine also computes

σ
n

=
p2

n

max(1,M − n − 1)

 1 / 2

and returns this value as SIGFAC.

The subroutine makes use of subroutines SROTMG and SROTM (or DROTMG and DROTM)
from the BLAS to implement a sequential Modified Givens orthogonal transformation method
of reducing the matrix of the least squares problem to triangular form (Ref. 1), and then solves
the triangular system. This method has excellent numerical stability.

After triangularizing the matrix of the problem for degree NMAX, the quantities p2
n
 and σ2

n
 may

be computed inexpensively for all degrees n from zero through NMAX. Thus, if the user sets
SEEKN = .TRUE. the subroutine computes these values of p2

n
 and computes

CMIN = min {σ2
n
 : 0 ≤ n ≤ NMAX}.

The quantity p
n
 is a strictly nonincreasing function of n whereas σ

n
 typically decreases initially

with increasing n, but then oscillates and slowly increases as n becomes so large that the
polynomial p

n
(x) is fitting noise rather than a true polynomial signal in the data.

The subroutine sets NDEG to be the smallest value of n for which σ2
n
 ≤ 1.01*CMIN, and it sets

SIGFAC = σNDEG. This method of selecting NDEG is generally satisfactory when the ratio

Polynomial Least-Squares Curve Fit 11.1-3

NMAX/M is reasonably small, say less than 1/3. If this ratio is larger, there is a tendency for
the NDEG selected by this method to be larger than one might choose if one viewed graphs of
solution polynomials of different degrees.

Whatever the setting of SEEKN, if the problem for degree NMAX is rank-deficient or very ill-
conditioned, the subroutine will restrict consideration to lower degrees for which the problem is
not extremely ill-conditioned. In particular this reduction of degree will certainly occur if
NMAX+1 > M.

Parameterization of the Polynomial, pn(x)
In this subroutine an nth degree polynomial p

n
(x) is represented in one of two special parametric

forms (monomial basis or Chebyshev basis), both of which include the specification of a linear
transformation of the independent variable in the parameterization. The parameters defining an
nth degree polynomial p

n
(x) are stored in the array P(I), I=1, ..., n+3.

Using the monomial basis these parameters define the polynomial p
n
(x) as follows:

(1) u = x − P(1)
P(2)

(2) P
n
(x) =

n

3
i = 0

P(i + 3)u i

whereas, if the Chebyshev basis is requested, p
n
(x) is defined as:

(3) u = x − P(1)
P(2)

where T
i
(u) denotes the Chebyshev polynomial of degree i. The Chebyshev polynomials may be

defined as follows:

(4) P
n
(x) =

n

3
i = 0

P(i + 3)T
i
(u)

T
0
(u) = 1, T

1
(u) = u, T

2
(u) = 2u2 - 1

T
i
(u) = 2u T

i-1
(u) - T

i-2
(u) i=3,4, ...

The parameters P(1) and P(2) that occur in the transformation formula (1) or (3) may be set by
the user (COMTRN = .FALSE.), or else computed by this subroutine (COMTRN = .TRUE.). In
the latter case P(1) and P(2) will be computed as

P(1) = (x
max

 + x
min

)/2

P(2) = (x
max

 - x
min

)/2

where x
max

 and x
min

 are respectively the maximum and minimum values of x in the data array
X(I), I=1, ..., M. This causes the transformed variable u of Eq. (1) or (3) to range from -1 to +1 as
x ranges from x

min
 to x

max
.

11.1-4 Polynomial Least-Squares Curve Fit

Reference
1. C. Lawson and R. Hanson, Solving Least Squares Problems, Prentice-Hall (1974).

E. Error Procedures and Restrictions
The use of the Chebyshev basis is effective in improving the conditioning of the problem only if
a transformation of the variable is used that maps the interval of interest for both fitting and
evaluation to an interval approximately coincident with [-1.,1.].

The automatic procedure for selecting the degree of the fitted polynomial, used when SEEKN =
.TRUE., tends to select the degree somewhat higher in some cases than one would choose by
looking at plots of fits of different degrees.

This subroutine will issue an error message, set NDEG = -1, and return if any of the following
erroneous conditions exists:

1. SD(1) = 0.
2. SD(1) > 0. and some SD(I) < 0. for 1 < I ≤ M.
3. M ≤ 0.
4. NMAX < 0.
5. COMTRN = .FALSE. and P(2) = 0.

F. Supporting Information
The source language is Fortran 77.

Program Unit
and Entry Name External References
 SPFIT SROTMG, SROTM, IERM1, IERV1, SERM1, SERV1, R1MACH
 DPFIT DROTMG, DROTM, IERM1, IERV1, DERM1, DERV1, D1MACH

Polynomial Least-Squares Curve Fit 11.1-5

DRSPFIT

c Demonstration driver for SPFIT.
 REAL X(12), Y(12), P(11), SIGFAC, W(121), SCPVAL
 REAL SD(1)
 DATA X / 2., 4., 6., 8.,10.,12.,14.,16.,18.,20.,22.,24./
 DATA Y /2.2,4.0,5.0,4.6,2.8,2.7,3.8,5.1,6.1,6.3,5.0,2.0/
 DATA SD(1) / -1.E0 /
 DATA M / 12 /
 CALL SPFIT(M,X,Y,SD,8, .TRUE. , .TRUE. , .TRUE. ,P,NDEG,SIGFAC,W)
 NP3=NDEG+3
 WRITE(*,1000) NDEG,SIGFAC,(P(I),I=1,NP3)
 WRITE(*,1001)
 DO I=1,M ! Using Fortran 90 "DO" syntax.
 YFIT=SCPVAL(P,NDEG,X(I))
 R=Y(I)-YFIT
 WRITE(*,1002)I,X(I),Y(I),YFIT,R
 ENDDO
 STOP
C
 1000 FORMAT('0NDEG =',I2,10X,'SIGFAC =',F8.4//
 *' P(1),P(2) =',9X,2F15.5//' P(3),...,P(NDEG+3) =',3F15.5/
 *(21X,3F15.6))
 1001 FORMAT('0 I X Y YFIT R=Y-YFIT'/1X)
 1002 FORMAT(1X,I2,F6.0,2F9.3,F10.3)
 END

11.1-6 Polynomial Least-Squares Curve Fit

ODSPFIT

NDEG = 7 SIGFAC = 0.2216

P(1),P(2) = 13.00000 11.00000

P(3),...,P(NDEG+3) = 3.99473 0.57358 -0.82918
 -0.583537 -1.423904 0.202192
 0.356891 -0.298388

 I X Y YFIT R=Y-YFIT

 1 2. 2.200 2.205 -0.005
 2 4. 4.000 3.959 0.041
 3 6. 5.000 5.147 -0.147
 4 8. 4.600 4.333 0.267
 5 10. 2.800 3.028 -0.228
 6 12. 2.700 2.699 0.001
 7 14. 3.800 3.651 0.149
 8 16. 5.100 5.156 -0.056
 9 18. 6.100 6.196 -0.096
10 20. 6.300 6.187 0.113
11 22. 5.000 5.048 -0.048
12 24. 2.000 1.992 0.008

Polynomial Least-Squares Curve Fit 11.1-7

11.2 Evaluation, Integration, and Differentiation of Polynomials

A. Purpose
This set of subroutines will evaluate, integrate, or differentiate polynomials. The polynomials
may be represented by coefficients relative to either the monomial or Chebyshev basis. The data
structure and parameterization used to represent a polynomial is the same as that used by the
least squares polynomial curve fit subroutines described in Chapter 11.1.

B. Usage

B.1 Usage for Evaluation
Program Prototype, Single Precision

INTEGERNDEG
REAL P(≥ NDEG+3), X, Y, SCPVAL, SMPVAL

Assign values to NDEG, X, and P(I), I = 1, NDEG+3. If the Chebyshev basis is being used, use
the statement:

Y = SCPVAL (P, NDEG, X)

If the monomial basis is being used, use the statement:

Y = SMPVAL (P, NDEG, X)

Following the appropriate one of these two statements the value of the polynomial at the
argument X will be stored in Y.

Argument Definitions
P() [in] An array containing NDEG+3 parameters that define a polynomial as described

in Section D.

NDEG [in] Degree of the polynomial.

X [in] Argument value at which the polynomial is to be evaluated.

SCPVAL [out] The value of the polynomial evaluated at X assuming the Chebyshev basis
representation.

SMPVAL [out] The value of the polynomial evaluated at X assuming the monomial basis
representation.

B.2 Usage for Integration
Program Prototype, Single Precision

INTEGERNDEGA, NDEGB
REAL A(≥ NDEGA+3), B(≥ NDEGA+4)

Assign values to NDEGA and A(I), I = 1, ..., NDEGA+3. If the Chebyshev basis is being used,
use the statement:

CALL SCPINT (A, NDEGA, B, NDEGB)

Evaluation, Integration, and Differentiation of Polynomials 11.2-1

If the monomial basis is being used, use the statement:

CALL SMPINT (A, NDEGA, B, NDEGB)

Following the appropriate one of these two call statements the results will be stored in B() and
NDEGB.

Argument Definitions
A() [in] An array containing NDEGA+3 parameters that define the input polynomial,

say p(x). See Section D for the specification of the parameterization.

NDEGA [in] Degree of the input polynomial, p(x).

B() [out] On return, B() will contain NDEGB+3 parameters defining the output
polynomial, say q(x), which is the indefinite integral of the input polynomial p(x).
Mathematically the constant term of q(x) is an arbitrary constant of integration. This
subroutine will set the constant term, B(3), to zero. The storage locations occupied by A()
and B() must be distinct.

NDEGB [out] The subroutine sets NDEGB = NDEGA+1 to indicate the degree of the output
polynomial. The storage locations occupied by NDEGA and NDEGB must be distinct.

B.3 Usage for Differentiation
Program Prototype, Single Precision

INTEGERNDEGC, NDEGD
REAL C(≥ NDEGC+3), D(≥ max [3, NDEGC+2])

Assign values to NDEGC and C(I), I = 1, ..., NDEGC+3. If the Chebyshev basis is being used,
use the statement:

CALL SCPDRV (C, NDEGC, D, NDEGD)

If the monomial basis is being used, use the statement:

CALL SMPDRV (C, NDEGC, D, NDEGD)

Following the appropriate one of these two call statements the results will be stored in D() and
NDEGD.

Argument Definitions
C() [in] An array containing NDEGC+3 parameters that define the input polynomial,

say p(x). See Section D for the specification of the parameterization.

NDEGC [in] Degree of the input polynomial, p(x).

D() [out] On return, D() will contain NDEGD+3 parameters defining the output
polynomial, say q(x), which is the derivative of the input polynomial p(x). The storage
locations occupied by C() and D() must be distinct.

NDEGD [out] The subroutine sets NDEGD = max [0, NDEGC-1] to indicate the degree of the
output polynomial. The storage locations occupied by NDEGC and NDEGD must be
distinct.

11.2-2 Evaluation, Integration, and Differentiation of Polynomials

B.4 Usage for Double Precision Evaluation, Integration or Differentiation
For DOUBLE PRECISION usage, change the REAL type statements to DOUBLE PRECISION
and change the initial "S" of the function and subroutine names to a "D." Note particularly that
if the function names DCPVAL or DMPVAL are used, they must be typed DOUBLE
PRECISION either explicitly or via an IMPLICIT statement.

C. Examples and Remarks
Let a cubic polynomial p(x) be defined relative to the Chebyshev basis as p(x) = 10 + 8T

1
(u) +

6T
2
(u) + 4T

3
(u) where u = (x - 5)/2. The DRSCPVAL program computes the indefinite integral

of p(x) calling it q(x). This computation is checked by computing r(x) as the derivative of q(x).
Note that r(x) agrees with p(x). Finally the program evaluates the definite integral:

z =
 6

I
 4

p(x)dx = q(6)− q(4) = 10 .

The output from this program is shown in ODSCPVAL.

D. Functional Description

In typical expected usage the polynomial parameter vector input to any of the subprograms of
this set will have been produced by the library curve fitting subroutine SPFIT (or DPFIT) or an
integration or differentiation subroutines of this set. The subprograms of this set are thus
intended to let the user do the operations of evaluation, integration or differentiation of
polynomials without being concerned with the details of the parametric representation of
polynomials or algorithmic details.

The following description is provided for those who wish to know more of the internal details.

For the purposes of this set of subprograms, a polynomial of degree n, say p(x), is represented
by a set of n + 3 parameters, say a

1
, ..., a

n+3
. The first two parameters define a linear

transformation of the independent variable:

u = (x-a
1
)/a

2
.

The remaining n + 1 parameters are coefficients of an nth degree polynomial in the transformed
variable u. If the Chebyshev basis is used this polynomial is

p(x) = q(u) =
n

3
i = 0

a
i + 3

T
i
(u)

whereas if the monomial basis is used the polynomial is

p(x) = q(u) =
n

3
i = 0

a
i + 3

u i .

The Chebyshev polynomials T
i
(u) are defined by the equations:

T
0
(u) = 1

T
1
(u) = u

T
i
(u) = 2uT

i-1
(u) - T

i-2
(u) i = 2, 3, ...

The formulas for differentiation and integration of polynomials expressed using the Chebyshev
basis may be derived from the following standard identities:

0 = dT
0
(u)/du

Evaluation, Integration, and Differentiation of Polynomials 11.2-3

T
0
(u) = dT

1
(u)/du

T
1
(u) = 0.25 dT

2
(u)/du

T
i
(u) = 1

2
d

du

T
i + 1

(u)
i + 1

T
i − 1

(u)
i − 1

, i = 2,3,...

The algorithms used by this set of subprograms are specified as follows:

Monomial Basis Evaluation, SMPVAL or DMPVAL
Given an nth degree polynomial p represented by the parameters p

i
, i = 1, ..., n + 3 and an

argument x, compute y = p(x).

u = (x-p
1
)/p

2

z
n
 = p

n+3

z
i
 = uz

i+1
 + p

i+3
i = n-1, n-2, ..., 0

y = z
0

Monomial Basis Integration, SMPINT or DMPINT
Given an nth degree polynomial p represented by the parameters a

i
, i = 1, ..., n + 3, compute the

parameters b
i
 that represent a polynomial q that for arbitrary u and v satisfies:

 v

I
 u

p(x)dx = q(v)− q(u).

The formulas used are:
b

1
 = a

1
, b

2
 = a

2
, b

3
 = 0

b
i+3

 = a
2
a

i+2
/i i = 1, ..., n + 1.

Monomial Basis Differentiation, SMPDRV or DMPDRV
Given an nth degree polynomial p represented by the parameters c

i
, i = 1, ..., n + 3, compute the

parameters d
i
 that represent the polynomial q satisfying:

(d/dx) p(x) = q(x).

The formulas used are:
d

1
 = c

1
, d

2
 = c

2

d
i+3

 = (i + 1)c
i+4

/c
2

i = 0, ..., n - 1

with a special case of d
3
 = 0 if n = 0.

Chebyshev Basis Evaluation, SCPVAL or DCPVAL
Given an nth degree polynomial p represented by the parameters p

i
, i = 1, ..., n + 3 and an

argument x, compute y = p(x).

u = (x - p
1
)/p

2

z
n
 = p

n+3

z
n-1

 = 2uz
n
 + p

n+2

z
i
 = 2uz

i+1
 - z

i+2
 + p

i+3
i = n - 2, ..., 1

y = uz
1
 - z

2
 + p

3

11.2-4 Evaluation, Integration, and Differentiation of Polynomials

Chebyshev Basis Integration, SCPINT or DCPINT
Given an nth degree polynomial p represented by the parameters a

i
, i = 1,..., n + 3, compute the

parameters b
i
 that represent a polynomial q that for arbitrary u and v satisfies:

 v

I
 u

p(x)dx = q(v)− q(u).

The formulas used are:
b

1
 = a

1
, b

2
 = a

2
, b

3
 = 0

b
4
 = a

2
[a

3
 - (1/2)a

5
]

b
i+3

 = a
2
(a

i+2
 - a

i+4
)/(2i) i = 2, ..., n + 1

where a
i
 for i > n + 3 is taken to be zero.

Chebyshev Basis Differentiation, SCPDRV or DCPDRV
Given an nth degree polynomial p represented by the parameters c

i
, i = 1, ..., n + 3, compute the

parameters d
i
 that represent the polynomial q satisfying:

(d/dx) p(x) = q(x).

The formulas used are:
d

1
 = c

1
, d

2
 = c

2

d
i+3

 = 2(i + 1)c
i+4

/c
2

i = n - 1, n - 2

d
i+3

 = d
i+5

 + 2(i + 1)c
i+4

/c
2

i = n - 3, ..., 0

d
3
 = d

3
/2

with a special case of d
3
 = 0 if n = 0.

E. Error Procedures and Restrictions

The degree of the input polynomial must be zero or positive. If it is negative, the subprograms in
this set will issue an error message and return taking no action.

The given values of P(2), A(2), and C(2) must be nonzero.

The storage locations for the input quantities in the integration and differentiation subroutines
must be distinct from the storage locations for the output quantities.

Since DCPVAL and DMPVAL are FUNCTION type subprograms, their names must be typed
DOUBLE PRECISION in any program that uses them.

F. Supporting Information
The source language is Fortran 77. The program units and entry names are

SCPVAL, SCPINT, SCPDRV, SMPVAL, SMPINT, SMPDRV,
DCPVAL, DCPINT, DCPDRV, DMPVAL, DMPINT, DMPDRV

The 'INT' and 'DRV' program units each have one external reference to the error message
processor, IERM1.

Evaluation, Integration, and Differentiation of Polynomials 11.2-5

DRSCPVAL
C DEMONSTRATE SCPDRV, SCPINT, AND SCPVAL.
C
 REAL P(6),Q(7),R(6)
 DATA P/ 5.E0, 2.E0, 10.E0, 8.E0, 6.E0, 4.E0 /
 CALL SCPINT(P,3,Q,NQ)
 CALL SCPDRV(Q,NQ,R,NR)
 Z=SCPVAL(Q,NQ,6.E0)-SCPVAL(Q,NQ,4.E0)
 WRITE(*,1000) P,Q,R,Z
 STOP
 1000 FORMAT(21X,'P =',2F4.0,2X,4F7.2//' INTEGRAL OF P. Q ='
 *,2F4.0,2X,5F7.2//' DERIVATIVE OF Q. R =',2F4.0,2X,4F7.2/
 */' DEFINITE INTEGRAL. Z =',F20.5)
 END

ODSCPVAL
 P = 5. 2. 10.00 8.00 6.00 4.00
INTEGRAL OF P. Q = 5. 2. 0.00 14.00 2.00 2.00 1.00
DERIVATIVE OF Q. R = 5. 2. 10.00 8.00 6.00 4.00
DEFINITE INTEGRAL. Z = 10.00000

11.2-6 Evaluation, Integration, and Differentiation of Polynomials

11.3 Conversion between Chebyshev and Monomial
Representations of a Polynomial

A. Purpose
These subroutines convert a polynomial represented in the monomial basis to a representation
in the Chebyshev basis, and vice versa.

B. Usage

B.1 Program Prototype, Single Precision
INTEGERN
REAL COEFF(0:≥N)

Assign values to N, and to coefficients in COEFF. If COEFF(i) contains coefficients of T
i
(x), i =

0, 1, ..., N, which are to be converted to coefficients of xi,

CALL SCONCM(N, COEFF)

For the inverse operation,

CALL SCONMC(N, COEFF)

Argument Definitions
N [in] The degree of the polynomial.

COEFF [inout] When calling SCONCM, COEFF(i) contains the coefficient of T
i
, i = 0, 1, ... N,

on input, and contains the coefficient of xi on output. When calling SCONMC, COEFF(i)
contains the coefficient of xi, i = 0, 1, ..., N on input, and the coefficient of T

i
 on output.

Modifications for Double Precision
Change the names SCONCM and SCONMC to DCONCM and DCONMC respectively, and
change the REAL declaration to DOUBLE PRECISION.

C. Examples and Remarks
The program DRSCON prints out the coefficients of the Chebyshev polynomials corresponding
to xk, k = 0, 1, ..., 6, and then prints the coefficients in the monomial basis corresponding to the
Chebyshev polynomials T

k
, k = 0, 1, ..., 6. Results are in the file ODSCON.

If these subroutines are applied to a coefficient array, say P(), obtained from SPFIT, Chapter
11.1, the zeroth order coefficient is in P(3), so the call would be of the form SCONxx(NDEG,
P(3)), where xx is either CM or MC.

D. Functional Description

Consider the polynomial p
n
(x) of degree n, which can be written as:

(1) p
n
(x) =

n

3
k = 0

a
k
xk /

n

3
k = 0

c
k
T

k
(x)

where T
k
(x) is the kth Chebyshev polynomial ≡ cos(k cos-1x). This software converts between the

a
k
's and the c

k
's.

Conversion between Chebyshev and Monomial Representations of a Polynomial 11.3-1

The method used is based on the well-known identities for the Chebyshev polynomials,

(2)
xT

k
(x) = 1

2
T

k + 1
(x)+ T

k − 1
(x)

xT
0
(x) = T

1
(x) = x.

We can write p
n
 in forms intermediate between the extremes represented in Eq. (1). It is these

intermediate forms that are used in obtaining the recurrences. Thus,

(3) p
n
(x) =

j − 1

3
k = 0

a
k
xk + x j

n − j

3
k = 0

b
k,j

T
k
(x) /

j

3
k = 0

a
k
xk + x j + 1

n − j − 1

3
k = 0

b
k,j + 1

T
k
(x).

Note that b
k,0

 ≡ c
k
. Using Eq. (2), Eq. (3) can be replaced by:

(4) p
n
(x) =

j − 1

3
k = 0

a
k
xk + x j

2

n − j − 1

3
k = 1

b
k,j + 1

T
k + 1

(x)+ T
k − 1

(x) + x jb
0,j + 1

T
1
(x).

Collecting like terms in Eqs. (3) and (4), we obtain,

(5)

a
j
+ 1

2
b

1,j + 1
 = b

0,j

b
0,j + 1

+ 1
2

b
2,j + 1

 = b
1,j

1
2

b
k1,j + 1

+ b
k + 1,j + 1

 = b
k,j

, k = 2,3,...,n − j − 1

1
2

b
n − j − 1,j + 1

 = b
n − j,j

.

The computation becomes more efficient if we replace b
k,j

 with 2 j B
k,j

. With this replacement, we
obtain the result,

(6)

2− ja
j
+ B

1,j + 1
 = B

0,j

B
0,j + 1

+ B
2,j + 1

 = B
1,j

B
k − 1,j + 1

+ B
k + 1,j + 1

 = B
k,j

, k = 2,3,n − j − 1

B
n − j − 1,j + 1

 = B
n − j,j

.

In the code, the B
j-k,k

 share space with the original a
k
 or the original c

k
. If one starts with the a

k
then one runs j from n down to 0, otherwise, j runs in the opposite direction. Observe that the
innermost loop requires only a single addition.

E. Error Procedures and Restrictions
If n < 0, a return is made without taking any action.

11.3-2 Conversion between Chebyshev and Monomial Representations of a Polynomial

F. Supporting Information
The source language is ANSI Fortran 77.

Program Unit and Entry Names: SCONCM, SCONMC, DCONCM, DCONMC

There are no external references.

DRSCON
 program DRSCON
c Check program for converting between Chebyshev and monomial basis.
c
 parameter (NMAX=6)
 integer N
 real COEFF(0:NMAX)
c
 print '(7X, 9(:'' X**'',I1))', (K, K = 0, NMAX)
 do N = 0, NMAX
 do K = 0, N-1
 COEFF(K) = 0.E0
 end do
 COEFF(N) = 1.E0
 call SCONCM(N, COEFF)
 print '('' T'', I1, ''(X) ='', F7.3, 8F8.3)', N,
 1 (COEFF(K), K = 0, N)
 end do
 print '(''0'', 5X, 9(:'' T'', I1, ''(X)''))', (K, K = 0, NMAX)
 do N = 0, NMAX
 do K = 0, N-1
 COEFF(K) = 0.E0
 end do
 COEFF(N) = 1.E0
 call SCONMC(N, COEFF)
 print '('' X**'', I1, '' ='', 9F8.5)', N, (COEFF(K), K = 0, N)
 end do
 stop
 end

Conversion between Chebyshev and Monomial Representations of a Polynomial 11.3-3

ODSCON

 X**0 X**1 X**2 X**3 X**4 X**5 X**6
T0(X) = 1.000
T1(X) = 0.000 1.000
T2(X) = -1.000 0.000 2.000
T3(X) = 0.000 -3.000 0.000 4.000
T4(X) = 1.000 0.000 -8.000 0.000 8.000
T5(X) = 0.000 5.000 0.000 -20.000 0.000 16.000
T6(X) = -1.000 0.000 18.000 0.000 -48.000 0.000 32.000

 T0(X) T1(X) T2(X) T3(X) T4(X) T5(X) T6(X)
X**0 = 1.00000
X**1 = 0.00000 1.00000
X**2 = 0.50000 0.00000 0.50000
X**3 = 0.00000 0.75000 0.00000 0.25000
X**4 = 0.37500 0.00000 0.50000 0.00000 0.12500
X**5 = 0.00000 0.62500 0.00000 0.31250 0.00000 0.06250
X**6 = 0.31250 0.00000 0.46875 0.00000 0.18750 0.00000 0.03125

11.3-4 Conversion between Chebyshev and Monomial Representations of a Polynomial

11.4 Least-Squares Cubic Spline Fit

A. Purpose
A cubic spline function with NB-1 segments is a function consisting of NB-1 pieces, each of
which is a cubic polynomial. At the abscissae, called knots, at which adjacent segments meet,
the function has C2 continuity, i.e. continuity in value, first derivative, and second derivative.

Subroutine SC2FIT or DC2FIT will determine the (NB-1)-segment cubic spline function, with
user specified knots, that best fits a set of discrete data in the sense of weighted least squares,
and return the values of the fitted spline curve and its first derivative at the knots. The user can
then evaluate the curve, or its first or second derivative, at any argument using the Hermite
interpolation subroutine, SHINT or DHINT, of Chapter 12.

This software can be used for interpolation by setting the number of knots, NB, to be two less
than the number of data points, NXY. Setting NB < NXY - 2 gives least-squares approximation.

B. Usage

Program Prototype, Single Precision
INTEGERNXY, NB, LDW, IERR1
REAL X(≥ NXY), Y(≥ NXY), SD(≥ NXY), B(≥ NB)

W(LDW,5), YKNOT(≥ NB), YPKNOT(≥ NB), SIGFAC

Assign values to X(), Y(), SD(), NXY, B(), NB, and LDW.

CALL SC2FIT(X, Y, SD, NXY, B, NB, W, LDW, YKNOT, YPKNOT, SIGFAC, IERR1)

Computed quantities are returned in YKNOT(), YPKNOT(), SIGFAC, and IERR1. Following the
use of SC2FIT, the user may use SHINT of Chapter 12 to compute values of the fitted curve.

Argument Definitions
X(),Y() [in] Data pairs (X(I), Y(I), I=1, ..., NXY). The contents of X() must satisfy X(1) ≤ X(2)

≤ ... ≤ X(NXY).

SD() [in] If SD(1) > 0., each SD(I) must be positive and must be the user's a priori
estimate of the standard deviation of the uncertainty (e.g., observational error) in the
corresponding data value Y(I).

If SD(1) < 0., |SD(1)| will be used as the a priori standard deviation of each data value
Y(I). In this case the array SD() may be dimensioned as SD(1).

An error condition is reported if SD(1) = 0.

NXY [in] Number of data points. Require NXY ≥ 4.

B() [in] Set by the user to specify the knot abscissae and endpoints for the spline curve.
Must satisfy B(1) < B(2) < ... < B(NB). Also require B(1) ≤ min

i
 [X(i)] and B(NB) ≥

max
i
 [X(i)].

NB [in] Number of knots, including endpoints. The number of segments in the spline
curve will be NB-1. The number of degrees of freedom for the fit will be NB+2. Require 2 ≤
NB ≤ NXY-2.

W(,) [scratch] Working space, dimensioned W(LDW,5).

Least-Squares Cubic Spline Fit 11.4-1

LDW [in] Leading dimension for the work array W(). LDW must be at least NB + 4, but
the execution time is less for larger values of LDW, up to NB + 3 + k, where k is the largest
number of data points lying between any adjacent pair of knots.

YKNOT(), YPKNOT() [out] Arrays, each of length at least NB, in which the subroutine will
store a definition of the fitted spline curve as a sequence of values of the curve and its first
derivative at the knot abscissae B(I). Letting f denote the fitted curve, the elements of these
arrays will be set to:

YNOT(i) = f(B(i)), i=1, ..., NB
YPNOT(i) = f’(B(i)), i=1, ..., NB.

SIGFAC [out] Set by the subroutine as a measure of the residual error of the fit. See
discussion in Section D.

IERR1 [out] Error status indicator. Set on the basis of tests done in SC2FIT as well as error
indicators IERR2 set by SBACC and IERR3 set by SBSOL. Zero indicates no errors
detected. See Section E for the meaning of nonzero values.

Modifications for Double Precision
For double precision usage change the REAL statement to DOUBLE PRECISION and change
the subroutine name SC2FIT to DC2FIT.

C. Examples and Remarks
Example: Given a set of 12 data pairs (x

i
,y

i
), compute the uniformly weighted least squares

cubic spline fit to these data using six uniformly spaced breakpoints, including endpoints.
After determining the spline function f(x), compute and tabulate the quantities x

i
, y

i
, f(x

i
), and r

i
= y

i
 - f(x

i
).

This computation is illustrated by the program DRDC2FIT and the output ODDC2FIT. The
fitted curve is determined using DC2FIT, and is evaluated using DHINT of Chapter 12.

Interpolation: If all of the data abcissae are distinct, and one wants interpolation, rather than
the smoothing effect of least-squares approximation, one can choose interpolation by setting NB
= NXY - 2. The NB knot abcissae can be assigned in various ways, but one reasonable way is to
set B(1) = X(1), B(i) = X(i+1), for i = 2, ..., NB-1, and B(NB) = X(NXY).

D. Functional Description

Let knot abscissae b
1
 < b

2
 < ... < b

NB
 be given. A cubic spline function defined over the interval

[b
1
, b

NB
] is a cubic polynomial in each subinterval [b

i
, b

i+1
], i = 1, ..., NB-1, with continuity of the

value, first derivative, and second derivative at each internal knot, b
2
, ..., b

NB-1
. The set of all

cubic spline functions defined relative to this knot set is a linear space of dimension d = NB+2.
If the knot spacing does not depart severely from uniformity, a well conditioned set of basis
functions for this space is provided by a particular set of cubic spline functions called B-
splines, p

i
(x), i = 1, ..., d, each of which is nonzero over at most four adjacent subintervals [Ref

1].

The problem data is {(x
i
, y

i
, s

i
), i = 1, ..., NXY}, where s

i
 is the a priori standard deviation of the

error in the value y
i
. The weighted least-squares curve fitting problem then becomes one of

determining coefficients c
j
 to minimize:

11.4-2 Least-Squares Cubic Spline Fit

p2 (c) =
NXY

3
i = 1

y
i
−

d

3
j = 1

c
j
p

j
(x

i
)

s
i

2

.

The matrix formulation of this least-squares problem involves a matrix having a banded form in
which at most four elements are nonzero in each row. This least-squares problem is solved using
the subroutines of Chapter 4.5

This problem will have a unique set of solution coefficients, c
j
, if NB ≤ NXY-2 and the

positioning of the knots is such that there exists an indexing of some set of NB+2 of the distinct
data abscissae, x

i
 (not necessarily the indexing used in the subprogram) such that b

i-3
 < x

i
 < b

i+1
for i = 1, ..., NB+2. Here b

-2
, b

-1
, and b

0
 denote fictitious knots to the left of b

1
, and b

NB+1
, b

NB+2
,

and b
NB+3

 denote fictitious knots to the right of b
NB

 [Ref 2]. If the solution is not unique, no
solution will be given and an error code will be returned as described in Section E.

After determining coefficients, c
j
, SC2FIT uses subroutine STRC2C to evaluate the value and

first derivative of the fitted curve at the knots. These quantities are returned to the user in the
arrays YKNOT() and YPKNOT() as the defining parameters of the fitted curve.

Subroutine SC2BAS is called by both SC2FIT and STRC2C to evaluate B-spline basis functions.

References

1. Carl de Boor, On Calculating with B-Splines, Jour. Approximation Theory 6, 1 (1972) pp 50-
62. Also: C. de Boor, A Practical Guide to Splines, Springer-Verlag (1978) 392 pp.

2. John Rice, Characterization of Chebyshev Approximations by Splines, SIAM J. Numer. Anal. 4,
4 (1967) pp 557-565.

E. Error Procedures and Restrictions
SC2FIT sets IERR1 and issues error messages based on internal tests as well as propagating
error information set in IERR2 by SBACC and in IERR3 by SBSOL. See Chap. 4.5 for the
meaning of IERR2 and IERR3. In all cases in which IERR1 is set nonzero, no solution will be
computed.

IERR1 Meaning
 0 No errors detected.
 100 NB < 2 or NXY < NB+2
 200 B(I) ≥ B(I+1) for some I.
 300 LDW < NB+4
 400 X(I-1) > X(I) for some I.
 500 B(1) > X(1) or B(NB) < X(NXY)
 600 Need larger dimension LDW.
 700 + IERR2 Set when SBACC returns with IERR2 ≠ 0
 800 + IERR2 Set when SBACC returns with IERR2 ≠ 0
 900 + IERR2 Set when SBACC returns with IERR2 ≠ 0
 1000 + IERR3 Set when SBSOL returns with IERR3 ≠ 0. Indicates singularity.
 1100 SD(1) = zero.

F. Supporting Information
Program Unit Source
and Entry Name Language External References

Least-Squares Cubic Spline Fit 11.4-3

DC2FIT SFTRAN3DBACC, DBSOL, DC2BAS, DTRC2C, ERMSG, IERM1,
IERV1, DERM1, DERV1

DTRC2C Fortran 77 DC2BAS

DC2BAS Fortran 77 None

SC2FIT SFTRAN3SBACC, SBSOL, SC2BAS, STRC2C, ERMSG, IERM1,
IERV1, SERM1, SERV1

STRC2C Fortran 77 SC2BAS

SC2BAS Fortran 77 None

DRDC2FIT

c program DRDC2FIT
c Demonstration driver for DC2FIT.
c --
 parameter(NXY = 12, NB = 6, NW = 10)
 double precision DHINT, X(NXY), Y(NXY), SD(01), B(NB), W(NW,5)
 double precision YKNOT(NB), YPKNOT(NB), R, SIGFAC, YFIT
 integer IERR
 data X / 2.D0, 4.D0, 6.D0, 8.D0,10.D0,12.D0,
 * 14.D0,16.D0,18.D0,20.D0,22.D0,24.D0/
 data Y /2.2D0,4.0D0,5.0D0,4.6D0,2.8D0,2.7D0,
 * 3.8D0,5.1D0,6.1D0,6.3D0,5.0D0,2.0D0/
 data B / 2.0D0, 6.4D0, 10.8D0, 15.2D0, 19.6D0, 24.0D0 /
 data NDERIV / 0 / SD(1) / -1.0D0 /
c --
 call DC2FIT(X, Y, SD, NXY, B, NB, W, NW, YKNOT,YPKNOT,SIGFAC,IERR)
 write(*,1000) IERR, SIGFAC, (YKNOT(I),I=1,NB)
 write(*,1001) (YPKNOT(I),I=1,NB)
 write(*,1002)
 do I=1,NXY ! Using Fortran 90 "DO" syntax.
 YFIT= DHINT(X(I), NDERIV, NB, B, YKNOT, YPKNOT)
 R=Y(I)-YFIT
 write(*,1003)I,X(I),Y(I),YFIT,R
 enddo
 stop
 1000 format(1X/ 5X,'IERR =',I5, ', SIGFAC =', F10.5
 * // 1x,' YKNOT() = ',4F10.5/(12X,4F10.5))
 1001 format(1x,'YPKNOT() = ',4f10.5/(12x,4f10.5))
 1002 format('0 I X Y YFIT R=Y-YFIT'/1X)
 1003 format(1X,I2,F6.0,2F9.3,F10.3)

 end

ODDC2FIT
 IERR = 0, SIGFAC = 0.14664
 YKNOT() = 2.20672 5.13370 2.61122 4.61735
 6.30079 1.99475
YPKNOT() = 0.76829 -0.05990 -0.25290 0.71946
 -0.10933 -2.07029

11.4-4 Least-Squares Cubic Spline Fit

 I X Y YFIT R=Y-YFIT

 1 2. 2.200 2.207 -0.007
 2 4. 4.000 3.958 0.042
 3 6. 5.000 5.111 -0.111
 4 8. 4.600 4.430 0.170
 5 10. 2.800 2.959 -0.159
 6 12. 2.700 2.646 0.054
 7 14. 3.800 3.734 0.066
 8 16. 5.100 5.162 -0.062
 9 18. 6.100 6.132 -0.032
10 20. 6.300 6.233 0.067
11 22. 5.000 5.033 -0.033
12 24. 2.000 1.995 0.005

Least-Squares Cubic Spline Fit 11.4-5

11.5 Least-Squares Data Fitting using Kth Order Splines with
Constraints

A. Purpose
This package contains two subprograms, DSFIT and DSFITC, for fitting a polynomial
spline function to discrete data. A polynomial spline function is a piecewise polynomial
function having specified orders of continuity at the abcissae, called knots, at which one
polynomial piece ends and another begins. Spline functions have been found to be very
useful in many computational processes due to their capability of representing a wide
variety of shapes in a controlled way.

DSFIT can be used either for a weighted least squares fit or for interpolation. DSFITC
adds capabilities for the user to specify constraints on the fit in the form of equality or
inequality conditions on the value or derivative (of specified order), of the spline
function at specified points, or the integral of the spline function over a specified
interval. These constraints can be used, for example, to assure monotonicity or
convexity of the fitted spline function over specified intervals.

The fitting subprograms return coefficients of a spline function relative to B-spline basis
functions using the parameterization conventions given by Carl de Boor in Ref 1. In this
approach the spline function will be of a user-specified order, K, which means the
polynomial pieces are of degree at most K-1. By default the continuity at knots will be of
order K-2, however the user can specify lower order of continuity at selected knots to
allow the curve to change direction more sharply.

For a spline function represented relative to the B-spline basis, subprogram DSVAL can
be used to evaluate the function or any of its derivatives at a specified point, and
subprogram DSQUAD can be used to evaluate the definite integral of the function
between specified limits.

The B-spline representation has the desirable property that usual continuity conditions
at knots are "built-in". This keeps down the number of coefficients that must be
determined in interpolation or least-squares fitting. A disadvantage is that evaluation of
a function represented in the B-spline representation is more expensive than is the use of
an alternative representation using the power basis.

If one is going to do a large number of evaluations of a spline function, one may choose
to convert the representation of the spline function from the B-spline basis to the power
basis to allow for more efficient evaluation. Subprogram DSTOP can be used to do this
conversion. Then DPVAL can be used to evaluate the function or any of its derivatives
at a specified point, and DPQUAD can be used to evaluate the definite integral of the
function between specified limits.

B. Usage

B1. Usage of DSFIT for Fitting Without Constraints
Program Prototype, Double Precision

INTEGER NXY, KORDER, NCOEF, LDW, IERR1
DOUBLE PRECISION BCOEF(≥NCOEF), X(≥NXY), Y(≥NXY), SD(≥NXY),

TKNOTS (≥NCOEF+KORDER), W(LDW,5), SIGFAC

Assign values to X(), Y(), SD(), NXY, KORDER, NCOEF, TKNOTS(), and LDW.

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-1

CALL DSFIT(X, Y, SD, NXY, KORDER, NCOEF, TKNOTS, BCOEF, SIGFAC, IERR1, LDW, W)

Computed quantities are returned in BCOEF(), SIGFAC, and IERR1. Following use of
DSFIT, the user may use DSVAL to compute values or specified derivatives of the fitted
curve, DSQUAD to compute the definite integral of the fitted curve over a specified
interval, or DSTOP to convert the representation to the power basis.

Argument Definitions
X(),Y() [in] Data pairs (X(i), Y(i), i=1, ..., NXY). Must be ordered so the X(i)'s are

either nondecreasing or nonincreasing.

SD() [in] If SD(1) > 0., each SD(i) must be positive and must be the user's a priori
estimate of the standard deviation of the uncertainty (e.g., observational error) in
the corresponding data value Y(i).

If SD(1) < 0., |SD(1)| will be used as the a priori standard deviation of each data
value Y(I). In this case the array SD() may be dimensioned as SD(1).

An error condition is reported if SD(1) = 0.

NXY [in] Number of data points. Require NXY ≥ max(NCOEF, KORDER).

KORDER [in] Order of the spline function. Each polynomial piece will be of degree at
most KORDER-1. The default order of continuity at each internal knot will be
KORDER-2. The popular case of a cubic spline with C2 continuity at the knots is
selected by setting KORDER = 4. Require KORDER ≥ 1. Internal arrays in this
package impose an upper limit of kmax = 20 on KORDER.

NCOEF [in] Number of terms in the sum representing the spline function. Require
NCOEF ≤ NXY.

TKNOTS() [in] The knots, t
i
, i = 1, ..., NCOEF+KORDER. The interval [t

KORDER
,

t
NCOEF+1

] will be the proper interpolation interval for the problem. This interval
should contain all the X(j) values, so it is reasonable to set t

KORDER
 ≤ min(X(1),

X(NXY)) and t
NCOEF+1

 ≥ max(X(1), X(NXY)). It is convenient and reasonable to set
the KORDER-1 knots with indices less than KORDER equal to t

KORDER
, and the

KORDER-1 knots with indices greater than NCOEF+1 equal to t
NCOEF+1

.

Knots indexed from KORDER+1 through NCOEF are internal knots. Internal knots
specify abcissae at which one polynomial piece ends and the next begins.
Successively indexed internal knots may have the same value. A knot appearing
with multiplicity µ means the order of continuity of the spline at this knot will be
at least KORDER-µ-1. Require 1 ≤ µ ≤ KORDER.

Require t
i
 ≤ t

i+1
 for i = 1, ..., NCOEF+KORDER-1; t

i
 < t

i+KORDER
 for i = 1, ...,

NCOEF; t
KORDER

 < t
KORDER+1

; and t
NCOEF

 < t
NCOEF+1

. See Sections C and D for
further discussion of knot placement.

BCOEF() [out] Coefficients c
i
, i = 1, NCOEF, in the sum representing the spline

function as a sum of coefficients times B-spline basis functions.

SIGFAC [out] Set by the subroutine as a measure of the residual error of the fit. The
subroutine sets:

11.5-2 Least-Squares Data Fitting using Kth Order Splines with Constraints

SIGFAC := RNORM

DOF 1 / 2
, where RNORM :=

NXY

3
i = 1

yfit
i
− Y

i

SD
i

2 1 / 2

, and DOF := max(1,N X Y− NC).

Here SD
i
 denotes SD(i) if SD(1) > 0, and |SD(1)| otherwise.

IERR1 [out] Error status indicator. Set on the basis of tests done in DSFIT, as well
as error indicators IERR2 set by DBACC and IERR3 set by DBSOL.

 IERR1 = 0 means no errors detected.
 = 100 means NC < 1 or NC > NXY
 = 150 means KORDER > kmax (= 20)
 = 200 means TKNOTS(I) > TKNOTS(I+1)
 = 250 means TKNOTS(I) ≥ TKNOTS(I+KORDER)
 = 300 means LDW < NCOEF + 2
 = 400 means The X(i)'s are neither nondecreasing nor
nonincreasing.
 = 600 means LDW < NCOEF + 2.
 = 700 + IERR2 means IERR2 ≠ 0
 = 800 + IERR2 means IERR2 ≠ 0
 = 900 + IERR2 means IERR2 ≠ 0
 = 1000 + IERR3 means IERR3 ≠ 0 due to singularity detected in

DBSOL.
 = 1100 means SDI(1) = zero.

LDW [in] Leading dimension for the work array W(). Require LDW ≥ NCOEF + 2.
Let α denote the maximum number of data abcissae, X(i), in any one knot interval,
i.e. between TKNOTS(j) and TKNOTS(j+1) for some j. The subroutine will be more
efficient if LDW is at least NCOEF+1+α.

W(,) [scratch] Working space, dimensioned W(LDW,≤KORDER+1).

B2. Usage of DSFITC for Fitting with Constraints

Program Prototype, Double Precision
INTEGER KORDER, NCOEF, ISET(3), INFO(ninfo)
DOUBLE PRECISION X(mdim), Y(mdim), SD(mdim),
TKNOTS(≥NCOEF+KORDER),

BCOEF(≥NCOEF), RNORM, W(nwork)
CHARACTER*4 CCODE(mdim)

The dimension mdim must be large enough to provide for specification of all constraint
and least-squares equations as described below in the description of CCODE(). See
ISET() for the specifications of ninfo and nwork.

Assign values to CCODE(), X(), Y(), SD(), KORDER, NCOEF, TKNOTS(), and ISET().

CALL DSFITC(CCODE, X, Y, SD, KORDER, NCOEF, TKNOTS, BCOEF, RNORM, ISET, INFO, W)

Computed quantities are returned in BCOEF(), RNORM, and INFO(). Following use of
DSFITC, the user may use DSVAL to compute values or specified derivatives of the
fitted curve, DSQUAD to compute the definite integral of the fitted curve over a
specified interval, or DSTOP to convert the representation to the power basis.

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-3

Argument Definitions
CCODE() [in, character*4] CCODE(i), or in some cases CCODE(i) and CCODE(i+1)

together, give specifications for one constraint equation or one least-squares
equation. CCODE(i) is regarded as consisting of four single-character fields.

CCODE(i)(1:1) = kind
i
 = '1', '2', '3', '4'.

CCODE(i)(2:2) = deriv
i
 = '0', '1', ..., '9'.

CCODE(i)(3:3) = relop
i
 = '~', '=', '<', '>'.

CCODE(i)(4:4) = active
i
 = 'A', 'N', '!'.

Where alphabetic characters are shown, the corresponding lower case character is
also acceptable.

active
i
 = '!' signals the end of information in this array. The user must provide this

termination signal. The other fields in this array element will be ignored. active
i
 = 'A'

means CCODE(i) is active so CCODE(i) will be processed. active
i
 = 'N' means

CCODE(i) is inactive so processing will advance to CCODE(i+1). To activate or
inactivate a pair [CCODE(i), CCODE(i+1)] in which kind

i
 = 3 or 4, place the same

code 'A' or 'N' in both active
i
 and active

i+1
.

relop
i
 = '=', '<', or '>' denotes a constraint equation with '=' meaning equal to, '<'

meaning less than or equal to, and '>' meaning greater than or equal to. relop
i
 = '~'

denotes a least-squares equation. For a least-squares equation the value SD(i) will
be used as the a priori standard deviation.

kind
i
 = 1 specifies an equation of the form

f (di)(X(i)) relop
i
 Y(i)

where f(di) denotes the derivative of order deriv
i
 of the spline function to be

determined. The zeroth order derivative is the function itself.

kind
i
 = 2 specifies an equation of the form

f (di)(X(i)) - f (di)(Y(i)) relop
i
 0.

Note that Y(i) is an independent variable value in this case.

kind
i
 = 3 uses items indexed by both i and i+1 and specifies an equation of the

form

f (di)(X(i)) - Y(i+1) × f (di+1)(X(i+1)) relop
i
 Y(i)

where f(di+1) denotes the derivative of order deriv
i+1

 of the spline function to be
determined.

kind
i
 = 4 uses items indexed by both i and i+1 and specifies an equation of the

form

(The integral from X(i) to X(i+1) of f) relop
i
 Y(i)

See Section C for discussion of expected applications of these different equation
forms.

X(), Y() [in] Data for use in building constraint or fitting equations as specified by the
contents of CCODE().

SD() [in] SD(i) specifies the a priori standard deviation of the error in the
equation specified by CCODE(i) when relop

i
= '~'. The weighted fitting algorithm

11.5-4 Least-Squares Data Fitting using Kth Order Splines with Constraints

will take account of these SD(i) values. Optionally, the user may set SD(1) to a
negative value. Then this subroutine will use |SD(1)| as the standard deviation
for the right-side value in each fitting equation. In this latter case the SD() array
can be dimensioned SD(1). Note that a negative value in SD(1) will always be
interpreted in this way regardless of the contents of CCODE(1). An error condition
is reported if SD(1) = 0.

KORDER [in] Order of the spline function. Each polynomial piece will be of degree at
most KORDER-1. The default order of continuity at each internal knot will be
KORDER-2. The popular case of a cubic spline with C2 continuity at the knots is
selected by setting KORDER = 4. Require KORDER ≥ 1. Internal arrays in this
package impose an upper limit of kmax = 20 on KORDER.

NCOEF [in] Number of terms in the sum representing the spline function.

TKNOTS() [in] The knots, t
i
, i = 1, ..., NCOEF+KORDER. The interval [t

KORDER
,

t
NCOEF+1

] will be the proper interpolation interval for the problem. This interval
should contain all the abcissa values occurring in the least-squares and constraint
equations, so it is reasonable to set t

KORDER
 less than or equal to the minimum of

these abcissae and t
NCOEF+1

 greater than or equal to the maximum. It is convenient
and reasonable to set the KORDER-1 knots with indices less than KORDER equal
to t

KORDER
, and the KORDER-1 knots with indices greater than NCOEF+1 equal to

t
NCOEF+1

.

Knots indexed from KORDER+1 through NCOEF are internal knots. Internal knots
specify abcissae at which one polynomial piece ends and the next begins.
Successively indexed internal knots may have the same value. A knot appearing
with multiplicity µ means the order of continuity of the spline at this knot will be
at least KORDER-µ-1. Require 1 ≤ µ ≤ KORDER.

Require t
i
 ≤ t

i+1
 for i = 1, ..., NCOEF+KORDER-1; t

i
 < t

i+KORDER
 for i = 1, ...,

NCOEF; t
KORDER

 < t
KORDER+1

; and t
NCOEF

 < t
NCOEF+1

. See Sections C and D for
further discussion of knot placement.

BCOEF() [out] Coefficients c
i
, i = 1, NCOEF, in the sum representing the spline

function as a sum of coefficients times B-spline basis functions.

RNORM [out] Set by the subroutine as a measure of the residual error of the fit.

RNORM := 3
i

resid
i

SD
i

2 1 / 2

,

where the summation is over indices for which relop
i
 = '~', and resid

i
 denotes the

residual after the fit in the equation specified by CCODE(i). Here SD
i
 denotes

SD(i) if SD(1) > 0, and |SD(1)| otherwise.

ISET() [in] Array of length 3. These specifications use the following values:

ns = the number of elements in CCODE() containing relop = '<' or '>' and active =
'A'.
m1 = the number of elements in CCODE() containing relop = '=', '<' or '>' and

active = 'A'.
mfit = the number of elements in CCODE() containing relop = '~' and active = 'A'.
ntot = NCOEF + ns, mtot = m1 + mfit, minmn = min(mtot, ntot).

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-5

ISET(1) = ninfo, the dimension of INFO(). A sufficiently large value is 7 + 2ntot.
ISET(2) = nwork, the dimension of WORK(). A sufficiently large value is

nwork = mtot×ntot + 3mtot + 6ntot + 3minmn + m1 .
ISET(3) = kprint, a print flag in the range [0, 4]. It is passed on to DBLSE. Zero

means no printing. Larger values produce more printing.

INFO() [out and scratch] The first 7 elements of INFO() are used to return
information about the problem. The following 2*(NCOEF+ns) locations are used as
scratch. The dimension of INFO() is ninfo given in ISET(1).

INFO(1) = ierr5, a status indicator incorporating information from ierr4 issued by
DBLSE. Possible values of ierr5 are as follows:

 ierr5 = 0 means no errors detected.
 = 100 means NCOEF < 1
 = 150 means KORDER > kmax (= 20)
 = 200 means TKNOTS(i) > TKNOTS(i+1)
 = 250 means TKNOTS(i) ≥ TKNOTS(i+KORDER)
 = 300 means ninfo or nwork is too small. Recommended values are returned

in INFO(2) and INFO(3).
 = 400 means SD(i) ≤ 0.0 for some i.
 = 500 means deriv

i
 has bad value for some i.

 = 600 means relop
i
 has bad value for some i.

 = 700 means kind
i
 has bad value for some i.

 = 800 means active
i
 has bad value for some i.

 = 1000 + ierr4 means ierr4 ≠ 0 due to error detected in DBLSE.

INFO(2) = need1, the dimension needed for INFO().
INFO(3) = need2, the dimension needed for WORK().
INFO(4) = m1 , the number of constraint rows in the matrix representation of the

problem. This will be the number of elements in CCODE() containing relop =
'=', '<' or '>' and active = 'A'

INFO(5) = mfit, the number of least-squares equations. This will be the number of
elements in CCODE() containing relop = '~' and active = 'A'.

INFO(6) = ns, the number of slack variables. This will be the number of elements in
CCODE() containing relop = '<' or '>' and active = 'A'.

INFO(7) = nsets, the number of variables in Set S at termination. These variables
are at values determined by solution of a system of equations. The other
NCOEF+ns-nsets variables will be at fixed values, either at one of their
bounds or at zero.

WORK() [scratch] Work space dimensioned nwork. See ISET(2) above.

B3. Usage of DSVAL for Evaluation Using the B-spline Basis
DSVAL returns the value at argument X of the derivative of order IDERIV of the spline
function defined by the parameter sequence [KORDER, NCOEF, TKNOTS(), BCOEF()].

Program Prototype, Double Precision
INTEGER NCOEF, KORDER, IDERIV
DOUBLE PRECISION TKNOTS(≥NCOEF+KORDER), BCOEF(≥NCOEF), X

Assign values to all arguments.

D = DSVAL (KORDER, NCOEF, TKNOTS, BCOEF, X, IDERIV)

11.5-6 Least-Squares Data Fitting using Kth Order Splines with Constraints

Argument Definitions
KORDER, NCOEF, TKNOTS(), BCOEF() [in] Quantities defining a spline function

relative to the B-spline basis as returned by DSFIT or DSFITC. Internal arrays in
this subprogram impose an upper limit of kmax = 20 on KORDER.

X [in] Argument at which the IDERIV order derivative of the spline function will be
evaluated.

IDERIV [in] Derivative order desired. Require IDERIV ≥ 0. Zero means to evaluate the
spline function itself.

B4. Usage of DSQUAD for Integration Using the B-spline Basis
DSQUAD returns the value of the integral from X1 to X2 of the spline function defined
by the parameter sequence [KORDER, NCOEF, TKNOTS(), BCOEF()].

Program Prototype, Double Precision
INTEGER KORDER, NCOEF
DOUBLE PRECISION TKNOTS(≥NCOEF+KORDER), BCOEF(≥NCOEF), X1,

X2

Assign values to all arguments.

D = DSQUAD(KORDER, NCOEF, TKNOTS, BCOEF, X1, X2)

Argument Definitions
KORDER, NCOEF, TKNOTS(), BCOEF() [in] Quantities defining a spline function

relative to the B-spline basis as returned by DSFIT or DSFITC.

X1, X2 [in] Limits of the integral to be evaluated. Permit X1 < X2 or X1 ≥ X2.

B5. Usage of DSTOP to Convert from the B-spline Basis to the Power Basis
DSTOP converts the representation of a spline function from the B-spline
parameterization [KORDER, NCOEF, TKNOTS(), BCOEF()], to the Power basis form
[KORDER, NPC, XI(), PCOEF()]. KORDER will not be changed. Typically the B-spline
parameters will have come from DSFIT or DSFITC. The Power coefficients can be used
by DPVAL and DPQUAD.

Program Prototype, Double Precision
INTEGER KORDER, NCOEF, NPC
DOUBLE PRECISION TKNOTS(≥NCOEF+KORDER), BCOEF(≥NCOEF),

BDIF(≥NCOEF*KORDER), XI(mpc+1),
PCOEF(≥KORDER*mpc)

The dimension mpc must be as large as the output value NPC. In terms of input
quantities, it suffices to set mpc ≥ NCOEF-KORDER+1. Assign values to KORDER,
NCOEF, TKNOTS(), and BCOEF().

CALL DSTOP(KORDER, NCOEF, TKNOTS, BCOEF, BDIF, NPC, XI, PCOEF)

Results are returned in NPC, XI(), and PCOEF().

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-7

Argument Definitions
KORDER, NCOEF, TKNOTS(), BCOEF() [in] Quantities defining a spline function

relative to the B-spline basis, as returned by DSFIT or DSFITC.

BDIF() [scratch] Work space of size NCOEF*KORDER.

NPC [out] NPC+1 will be the number of distinct values in the sequence
{TKNOTS(i), i = KORDER, ..., NCOEF+1}. NPC will satisfy NPC ≤
NCOEF-KORDER+1.

XI() [out] A strictly increasing sequence of length NPC+1 consisting of all the
distinct values from the sequence {TKNOTS(i), i = KORDER, ..., NCOEF+1}.

PCOEF() [out] PCOEF(i+(j-1)*KORDER) will be be the coefficient of (t -
XI(j))**(i-1) in the power basis representation of the spline function. (i = 1, ...,
KORDER; j = 1, ..., NPC)

B6. Usage of DPVAL for Evaluation Using the Power Basis
DPVAL returns the value at argument X of the derivative of order IDERIV of the spline
function defined by the parameter sequence [KORDER, NPC, XI(), PCOEF()].

Program Prototype, Double Precision
INTEGER NPC, KORDER, IDERIV
DOUBLE PRECISION XI(≥NPC+KORDER), PCOEF(≥KORDER*NPC), X

Assign values to all arguments.

D = DPVAL (KORDER, NPC, XI, PCOEF, X, IDERIV)

Argument Definitions
KORDER, NPC, XI(), PCOEF() [in] Quantities defining a spline function relative to the

power basis, as returned by DSTOP.

X [in] Argument at which the IDERIV order derivative of the spline function
will be evaluated.

IDERIV [in] Derivative order desired. Require IDERIV ≥ 0. Zero means to evaluate the
spline function itself.

B7. Usage of DPQUAD for Integration Using the Power Basis

DSQUAD returns the value of the integral from X1 to X2 of the spline function defined
by the parameter sequence [KORDER, NPC, XI(), PCOEF()].

Program Prototype, Double Precision
INTEGER KORDER, NPC
DOUBLE PRECISION XI(≥NPC+KORDER), PCOEF(≥KORDER*NPC), X1, X2

Assign values to all arguments.

D = DPQUAD(KORDER, NPC, XI, PCOEF, X1, X2)

Argument Definitions

11.5-8 Least-Squares Data Fitting using Kth Order Splines with Constraints

KORDER, NPC, XI(), PCOEF() [in] Quantities defining a spline function relative to the
power basis, as returned by DSTOP.

X1, X2 [in] Limits of the integral to be evaluated. Permit X1 < X2 or X1 ≥ X2.

B8. Modifications for Single Precision
For single precision usage change the DOUBLE PRECISION statements to REAL and
change the initial "D" in the subprogram names to "S".

C. Examples and Remarks

Demonstration of DSFIT. The demonstration driver DRDSFIT sets up a curve fitting
problem having 12 (x,y) pairs of data. It uses DSFIT to do a least-squares fit to this
data with an 8-parameter cubic spline function. It uses DSVAL to evaluate the fitted
function over the given set of x values. It uses DSQUAD to compute the definite integral
of the fitted function from 5.0 to 20.0. It uses DSTOP to convert the B-spline
representation to the power representation. It then uses DPVAL and DPQUAD to
repeat the function evaluation and integral computation using the power representation.
The output is listed in ODDSFIT.

Demonstration of DSFITC. The program DRDSFITC illustrates the use of DSFITC to
compute a constrained least-squares spline fit to data. Output from DRDSFITC is listed
in ODDSFITC. We have 24 data points, given in the the first 24 entries of the arrays XI()
and YI() in the DATA statement in DRDSFITC.

Suppose these data are measurements of some phenomenon that is known to be
monotone nondecreasing and we wish to find a monotone nondecreasing function that
closely fits the data. An unconstrained least-squares fit to this data by a single
polynomial or by a polynomial spline function will have unwanted oscillations. There
are rational functions and exponential functions with three parameters that are
monotone and of somewhat the desired shape, but these functions do not have enough
free parameters to allow the function to fit the data really closely. A satisfactory fit can
be obtained using a cubic spline function having C2 continuity.

The data abcissae range from 0 to 6. We shall place quadruple knots at these two points
and internal knots at 1.5, 2.5, 3.3, 4.0, and 4.7. The number and locations of these
internal knots were selected by some trial and error. These knot values are stored in
TKNOTS(). Since we have selected a total of 13 knots and we have KORDER = 4 to
specify a cubic spline, the number of coefficients will be set to NCOEF = 13 - 4 = 9.

We shall require the curve to be concave up over [0, 2.5] by requiring f” ≥ 0 at 0 and at
the first two internal knots. These constraints, along with the constraint f’(0) ≥ 0, will
force f’ to be nonnegative over [0, 2.5]. Similarly we require the curve to be concave
down over [3.3, 6] by requiring f” ≤ 0 at the last three internal knots and at 6. These
constraints, along with the constraint f’(6) ≥ 0, will force f’ to be nonnegative over
[3.3, 6]. It follows that f’ ≥ 0 over [2.5, 3.3] since in this interval f’ is a quadratic
polynomial that is nonnegative and nondecreasing at 2.5 and nonnegative and
nonincreasing at 3.3.

The second derivative of a cubic spline is linear between knots. Thus in the interval
between the successive knots at 2.5 and 3.3, the conditions f”(2.5) ≥ 0 and f”(3.3) ≤ 0
imply that f” can have at most one sign change in this interval. This assures the only
inflection point of the curve over (0, 6) will occur in the interval [2.5, 3.3].

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-9

Supposing we also wish to have the fitted curve take the value 1 at 0 and the value 5 at
6, we also impose these constraints.

Recall that the four characters in each entry of CCODE() are interpreted as (kind, deriv,
relop, active). All but the last element of CCODE() have active = 'a', meaning these
elements are active, while the last element has active = '!', which is the termination signal.
All of the active elements have kind = '1', meaning the specified equation is of the form,

f(di)(XI(i)) relop
i
 YI(i).

The first 24 entries have relop = '~', meaning that each specifies one of the least-squares
equations. The ten elements of CCODE() beginning with CCODE(25) specify the
constraints. For example CCODE(26) has deriv = '1' and relop = '>' meaning the first
derivative at XI(26) is constrained to be ≥ YI(26).

Using Constraints to Control Shape. A function with at least C1 continuity is
nondecreasing over [c,d] if its first derivative is nonnegative throughout [c,d]. A function
with at least C2 continuity is concave up over an interval [c,d] if its second derivative is
nonnegative throughout [c,d]. Although these are properties defined over an interval, it is
possible to impose these conditions on spline functions by appropriate assignment of
constraints at a finite number of points.

Note that if f is a cubic spline function with C2 continuity, then f’ is a quadratic spline
with C1 continuity, and f” is a linear spline function with C0 continuity, i.e., f” is a
continuous piecewise linear function with possible slope changes only at knots. It
follows that by requiring f” ≥ 0 at c and d, and at any knots between c and d, f” will
necessarily be nonnegative throughout [c,d], and therefore f will be concave up
throughout [c,d].

If one wants f to be monotone nondecreasing as well as concave up over [c,d] it suffices
to require f’(c) ≥ 0 along with the second derivative conditions already discussed, since
with f” ≥ 0 throughout [c,d], f’ cannot have a smaller value anywhere in [c,d] than it has
at c.

If one wants monotonicity for f without second derivative constraints, one could let f be
a quadratic spline rather than a cubic spline. Then f’ will be piecewise linear and one can
control the sign of f’ over an interval by constraining f’ at knots as was done above for
f”. If one prefers to use cubic splines, one can do trial and error placement of constraints
on f’ and eventually keep f’ from changing sign.

Periodicity. When periodicity is desired it should be specified for the function value and
all orders of derivatives that are continuous at the points referenced in the specification.
For example, suppose one wants periodicity of 360 degrees. The proper interpolation
interval could be set as [a,b] = [0.0, 360.0]. If one uses KORDER = 4 one should specify
periodicity for f, f’, and f”. This can be done by setting CCODE(1:3) := '20=a', '21=a',
'22=a'; X(1:3) := 0.0, 0.0, 0.0; and Y(1:3) := 360.0, 360.0, 360.0.

Although it is not essential to do so, one may wish to have the periodicity reflected in
the coefficients. Letting p denote the period, and assuming p+t

KORDER
 = p+a = b =

t
NCOEF+1

, this can be done by setting the initial knots as t
i
 := -p+t

NCOEF+1-KORDER+i
, for i = 1,

..., KORDER-1, and the final knots as t
NCOEF+1+i

 := p+t
KORDER+i

, for i = 1, ..., KORDER-1.
Then the coefficients will reflect the periodicity by satisfying c

NCOEF+1-KORDER+i
 = c

i
, for i =

1, ..., KORDER-1.

Differential Equations. Using kind = 3, conditions such as f’(x) - cf(x) = d, or f’(x) - cf(x)
~ d (and slightly more general expressions) can be specified for given values of x, c and

11.5-10 Least-Squares Data Fitting using Kth Order Splines with Constraints

d. Thus DSFITC can be used to implement the collocation method of computing an
approximate solution to linear differential equations.

Assignment of Knots. Many discussions of spline interpolation are based on the
assumption that many, or all, of the knots will be assigned to coincide with data
abscissas. This is not necessary, either for interpolation or least-squares fitting.

The necessary and sufficient condition for an unconstrained interpolation or least-
squares fitting problem using a family of NC B-spline basis functions of order K to give
rise to a full-rank matrix, and thus have a unique solution, is that there are at least NC
distinct data abscissas, and that it is possible to choose NC distinct data abscissas and
relabel them, say as u

i
, i = 1, NC, so they will satisfy B

i
(u

i
) ≠ 0 for i = 1, ..., NC. This

condition will be satisfied if the (possibly relabled) u
i
's relate to the knots according to t

i
< u

i
 < t

i+K
 for i = 1, ..., NC.

Consider an interpolation problem with NXY data points, all data abscissas being
distinct. Choose a spline order K ≥ 2. We must use exactly NC = NXY B-spline basis
functions. Thus NC+K knots must be assigned. Let a and b be the minimum and
maximum data abscissas respectively. Assign the first K knots the value a and the last
K knots the value b. Then NC-K knots remain to be assigned and there are NC-2 data
abscissas distinct from a and b. One simple approach is to use any NC-K of these NC-2
data abscissas as knots. In the popular case of cubic spline interpolation (K = 4), there
would be just two data abscissas not used as knots. It is common to choose these to be
the first one after a and the last one before b.

Another method suggested in Ref 1, pp. 218-219, for assigning the interior knots for
interpolation is the formula

t
i
 = (u

i-K+1
 + ... + u

i-1
)/(K-1), i = K+1, ..., NC

where the ordered set of data abscissas are denoted by u
i
, i = 1, ..., NC.

For least-squares fitting one must choose NC < NXY.

D. Functional Description
Representation of an individual B-spline basis function. Let {t

1
, ..., t

K+1
} be a set of

strictly increasing real numbers we will call knots. To within a multiplicative scale
factor, there is one, and only one, spline polynomial function of order K (i.e., having
polynomial pieces of degree at most K-1) having at least CK-2 continuity at these knots,
and being nonzero throughout the open interval (t

1
, t

K+1
), and zero outside this interval.

With some convention for assigning the scale factor, such a function is called a B-spline
basis function. The interval 〈t

1
, t

K+1
〉 will be called the support interval for this B-spline

basis function. We use angle brackets 〈 〉 to indicate that we are not specifying whether
the endpoints are included or not.

Following Ref 1, these definitions can be generalized to allow knots to coelesce. This has
a natural mathematical interpretation of reducing the order of continuity at the affected
knots. At an ordinary non-multiple knot, a spline function of order K has CK-2

continuity. At a knot of multiplicity, µ a spline function of order K has CK-µ-1 continuity.
For example, a B-spline basis function of order 4 defined over the knot set {0, 1, 1, 5, 6}
consists of only three nontrivial cubic pieces, and these have C2 continuity at 0, 5, and 6,
but only C1 continuity at 1. This freedom to lower the order of continuity at specified
places can be useful in allowing a curve to change direction more sharply at such a
point.

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-11

Representation of a Spline Function Using the B-Spline Basis. Suppose we wish to
construct a family of spline functions of order K, and having NC degrees of freedom,
over an interval [a,b], which will be called the proper interpolation interval for this spline
family. We require a < b and NC ≥ K. Construct a knot sequence T = {t

1
, ..., t

NC+K
}. This

sequence must be nondecreasing and have t
K
 = a and t

NC+1
 = b. The values of the knots

indexed before K or after NC+1 do not affect the shapes that can be achieved by the
family of splines to be defined. A convenient way to set these knots is to set t

1
 = ... = t

K
= a, and t

NC+1
 = ... = t

NC+K
 = b.

The knots indexed from K+1 through NC are called interior knots. Internal knots define
where the different polynomial pieces meet. Their placement determines the shapes that
the resulting spline family can achieve. We require t

K
 < t

K+1
, and t

NC
 < t

NC+1
, and t

i
 < t

i+K
for i = 1, ..., NC. Within the limitations of these constraints, successive interior knots
need not be distinct. At a knot of multiplicity µ members of this spline family will have
CK-µ-1 continuity.

For each i = 1, ..., NC, we associate a B-spline basis function B
i
 having 〈t

i
, t

i+K
〉 as its

support interval. For i = K, ..., NC, each interval 〈t
i
, t

i+1
〉 is in the support interval of

exactly K basis functions, namely B
j
, for j = i-K+1, ..., i. If such an interval 〈t

i
, t

i+1
〉 has

nonzero length, the K basis functions that contain this interval in their support intervals
form a basis for the space of all polynomials of degree ≤ K-1 over this interval. The
closed union of these intervals is the interval [a,b]. This is the interval over which it is
most reasonable to use linear combinations of the B

i
's to fit data.

Any polynomial of degree ≤ K-1 can be exactly represented over [a,b] by a linear
combination of the B

i
's, i = 1, ..., NC. In particular, the constant function whose value is

one is representable over [a,b] by a linear combination of the B
i
's. In this package the

scaling of the B
i
's is determined by the requirement that all the coefficients in this linear

combination be ones, i.e.,
NC

3
i = 1

B
i
(t) = 1 for all t ∈ [a,b].

Given coefficients, c
i
, i = 1, ..., NC, a spline function, f(t), is represented for t ∈ [a,b] as

f(t) =
NC

3
i = 1

c
i
B

i
(t) . Although this is a sum of NC terms, at most K of the terms are

nonzero at any single point, t, due to the properties of the basis functions. For
evaluation of f(t) at a point t ∈ (a,b) that coincides with a knot, this package uses the
polynomial piece defined over the nonzero subinterval immediately to the right of t. This
package allows extrapolation outside the interval (a,b) using the convention that for t ≤
a, the package will extend the polynomial that is defined over 〈t

K
,t

K+1
〉, and for t ≥ b the

package will extend the polynomial that is defined over 〈t
NC

,t
NC+1

〉.

Within this package a spline function is fully specified relative to the B-spline basis by
two integers, KORDER and NCOEF, and two floating point arrays, TKNOTS() and
BCOEF(), containing {t

i
, i = 1, ..., NCOEF+KORDER} and {c

i
, i = 1, ..., NCOEF}.

Representation of a Spline Function Using the Piecewise Power Basis. Assume a
spline function f(t) has been defined relative to the B-spline basis as described above.
Let NPC be the number of subintervals of nonzero length into which [a,b] is partitioned
by the knot sequence T. Let x

j
, j = 1, ..., NPC be the left endpoints of these subintervals,

and let x
NPC+1

 = b. For the half-open subinterval [x
j
,x

j+1
) coefficients p

i,j
 can be

determined so the polynomial

p
1,j

 + p
2,j

h + p
3,j

h2 + ... + p
K,j

hK-1

11.5-12 Least-Squares Data Fitting using Kth Order Splines with Constraints

with h = (t-x
j
), is identical to the polynomial spline function f(t) over this interval. If

evaluation for t outside [a,b) is requested, the package will use the coefficients indexed
by j = 1 if t < a, and will use j = NPC if t ≥ b.

Within this package a piecewise polynomial represented relative to the power basis is
specified by two integers, KORDER and NPC, and two floating point arrays, XI() and
PCOEF(), containing {x

i
, i = 1, ..., NPC+1} and {p

i,j
, i = 1, ..., KORDER; j = 1, ..., NPC}.

The power representation does not inherently assure any particular order of continuity
at the knots. However, if the coefficients are determined by conversion from a B-spline
representation, they will represent the same spline function and thus have the same
continuity properties.

Computation Using B-Spline Basis Functions Suppose a spline function f is defined
relative to a B-spline basis by the quantities KORDER, NCOEF, T() and BCOEF() as
discussed above. The proper interpolation interval for f is [a,b] where a = t

KORDER
, and b =

t
NCOEF+1

. With any argument x we associate a reference index, j, and reference interval 〈t
j
,

t
j+1

〉 having t
j
 < t

j+1
. If x ∈ [a,b), j is chosen so that x ∈ [t

j
,t

j+1
), otherwise, if x < a set j :=

KORDER, and if x ≥ b set j := NCOEF. Given x, subprogram DSFIND determines its
reference index. From an initial trial value for j the subprogram searches forward or
backward, doubling the index increment for each trial, until either a bracketing pair of
knots is found or the search reaches one end of the specified search range. If a bracketing
interval is found, bisection is used, if necessary, to reduce the interval to the prescribed
form.

To describe the computational algorithms, we need to consider families of lower order
basis functions over the same knot sequence T. Let NT denote the number of knots in T,
i.e., NT = KORDER+NCOEF. For k = 1, ..., KORDER, let {B

i,k
, i = 1, ..., NT-k}, be the set

of B-spline basis functions of order k associated with T. The support interval for the
function B

i,k
 is 〈t

i
, t

i+k
〉. Formally one may follow Ref 1, p. 118, and define B

i,k
 ≡ 0 if t

i
 =

t
i+k

, however it happens that these functions do not occur in the algorithms we consider.

A B-spline basis function of order k can be expressed in terms of two basis functions of
order k-1 as:

(1) B
i,k

(x) =
x − t

i

t
i + k − 1

− t
i

B
i,k − 1

(x)+
t

i + 1
− x

t
i + k

− t
i + 1

B
i + 1,k − 1

(x).

This formula was discovered and published independently by M. G. Cox and C. de
Boor in 1972. It is a very favorable formula with regard to propagation of roundoff error
since, except when used for extrapolation, the B's and the factors multiplying the B's are
always nonnegative, so the central "+" always involves addition of nonnegative
quantities.

Consider now the problem in which we are given an x and its reference index j, and we
need to compute values at x of the KORDER basis functions of order KORDER that are
nonzero on 〈t

j
, t

j+1
〉. These functions will be B

j-KORDER+1,KORDER
 through B

j,KORDER
.

Among the basis functions of order 1, only B
j ,1

 is nonzero on 〈t
j
, t

j+1
〉 and its value is 1

throughout this interval. At order 2 only the two basis functions B
j-1,2

 and B
j ,2

 are
nonzero on 〈t

j
, t

j+1
〉. These can be computed using Eq(1) and the known values of B

j-1,1
,

B
j ,1

, and B
j+1,1

, which are 0, 1, and 0, respectively. Clearly this process can be continued
until the values of the KORDER nonzero basis functions of order KORDER are
computed. This method is implemented in subprogram DSBASD. For the case of cubic

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-13

splines (KORDER = 4), this involves nine applications of Eq(1) and in six of these
applications one of the entering B's is known to be zero.

To evaluate a spline function f at a given argument x, one could use this method to
evaluate the nonzero basis functions and then form the sum of these multiplied by the
coefficients that define f. There is a more efficient method however. For a spline function
f of order k, its evaluation for a point x with reference index j can be expressed as

f(x) =
j

3
i = j − k + 1

c
i,k

B
i,k

(x). Replacing each B
i,k

 in this expression by the right side of Eq(1)

and collecting terms on the B
i,k-1

's, and noting that only k-1 of these (k-1)-order basis
functions are nonzero on the reference interval, gives the expression

f(x) =
j

3
i = j − k + 2

c
i,k − 1

(x)B
i,k − 1

(x) where

(2) c
i,k − 1

(x) =
(x − t

i
)c

i,k
+ (t

i + k − 1
− x)c

i − 1,k

t
i + k − 1

t
i

.

One can continue reducing the spline order and the number of terms in the sum in this
way, finally reaching spline order 1 with only one term in the sum: f(x) = c

j ,1
(x)B

j ,1
(x) ≡

c
j ,1

(x), since B
j ,1

(x) = 1.

Thus, as an algorithm for evaluating a spline function of order KORDER at an argument
x with reference index j, one initializes the process by setting c

i,KORDER
 := c

i
, for i =

j-KORDER+1, ..., j. Then for k = KORDER, KORDER-1, ..., 2, one computes c
i,k-1

 for i =
j-k+2, ..., j, using Eq(2). The final quantity c

j ,1
 is the value f(x). This method is

implemented in subprogram DSVAL. For the case of cubic splines (KORDER = 4), this
involves six applications of Eq(2).

The first derivative of a spline function f of order k is a spline function of order k-1 over

the same knot sequence. For an x with reference index j we have f(x) =
j

3
i = j − k + 1

c
i,k

B
i,k

(x)

and f(x) =
j

3
i = j − k + 2

c(1)

i,k − 1
B

i,k − 1
(x) , where

(3) c(1)
i,k − 1

 =
(k − 1)(c

i,k
− c

i − 1,k
)

t
i + k − 1

− t
i

.

To compute the value of the nth derivative of a spline function, Eq(3) can be applied as
many times as necessary to compute coefficients of a B-spline representation of the nth

derivative, and then Eq(2) can be used to evaluate the derivative. This algorithm is
implemented in DSVAL with all computation being done from scratch for a given x.

Since Eq(3) does not involve x, it is possible to use Eq(3) to precompute an array of
coefficients for later use in computing derivative values for many x values. This
approach is implemented in DSDIF and DSVALA. DSDIF computes the array of
coefficients for all derivatives of orders up to a specified NDERIV and DSVALA uses
these coefficients in computing the values of all derivatives of orders up to NDERIV for
a given x. Subprogram DSTOP for the conversion from the B-spline basis to the power
basis uses DSVALA, since the coefficents relative to the power basis are just derivatives
of the spline function divided by factorials.

11.5-14 Least-Squares Data Fitting using Kth Order Splines with Constraints

For an x with reference index j, DSBASD computes the NDERIVth derivative of the
KORDER basis functions of order KORDER that are nonzero on the reference interval.
From Eq(3) we can express the first derivative of a single basis function as

(4) B '

i,k
(x) = (k − 1)

B
i,k − 1

(x)

t
i + k − 1

− t
i

−
B

i + 1,k − 1
(x)

t
i + k

− t
i + 1

.

DSBASD first uses Eq(1) to compute the values B
i,KORDER − NDERIV

(x) , for i =

j-KORDER+NDERIV+1, ..., j. Then for d = 1, ..., NDERIV, DSBASD uses Eq(4) to
compute B (d)

i,KORDER − NDERV + d
(x) , for i = j-KORDER+NDERIV-d+1, ..., j.

It is possible to derive formulas for the exact integration of a spline function by
appropriate inverse use of Eq(3). The resulting method is unwieldy, and suspect with
regard to propagation of roundoff error. Instead we follow the approach of Amos, Ref
2, that uses Gaussian quadrature. An n-point Gaussian quadrature formula is exact for
polynomials up to degree 2n-1. The formula is applied separately to each polynomial
piece needed to cover a specified integration interval. This method is used in DSQUAD
and in DSBASI. Each of these subprograms contains stored constants for 2, 6, and 10-
point Gaussian formulas. The 2-point formula is used for KORDER from 1 to 4, the 6-
point formula from 5 to 12, and the 10-point formula from 13 to 20.

The fitting subroutine DSFIT uses DSBASD to form rows of the matrix for the least-
squares problem. Each row will have at most KORDER nonzeros in consecutive
locations giving rise to a block-banded form for the matrix. DSFIT uses DBACC and
DBSOL to process and solve this system. This approach takes advantage of both the
band structure and sequential processing to reduce the amount of working space
needed.

The constrained fitting subroutine DSFITC uses DSBASD and DSBASI, as appropriate
to form rows of matrices representing the constraint conditions and the least-squares
problem. Due to the general form of constraints allowed, the overall problem is not
assumed to have a banded form so the matrices are formed in full. The resulting problem
is linear least-squares with general linear equality and inequality constraints which is
solved using DBLSE.

References
1. Carl de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

2. D. E. Amos, Sandia report SAND79-1825, Sandia Laboratory, Albuquerque, June,
1979.

3. T. M. Lang, R. J. Hanson, and D. R. Campbell, French Curve, JPL internal computing
memorandum No. 203, Sept 1968, revised Sept 1969, 27 pp.

E. Error Procedures and Restrictions
DSFIT, DSFITC, and DSVAL each contain an internal dimensioning parameter kmax =
20. It is an error if KORDER > kmax in any of these subprograms.

DSFIT handles any detected error by setting IERR1, reporting the error to the library
error message processing subroutines of Section 19.2 and then returning. DSFITC
handles errors similarly, setting the indicator ierr5 in INFO(1).

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-15

The only error detected in DSVAL is KORDER > kmax, in which case DSVAL calls the
library error processing subroutines with severity level 2 which nominally causes
message printing and termination of execution.

Abcissae and weights for 2-point, 6-point, and 10-point Gaussian quadrature are stored
to 40 decimal digits in DSQUAD. With infinite precision abcissae and weights, these
formulae would be exact for splines of KORDER up to 20. DPQUAD does not use any
inexact stored constants.

F. Supporting Information
Subroutines DSFIT and DSFITC were written in the JPL SFTRAN structured Fortran
language and transformed to Fortran 77. The other subprograms were written directly in
Fortran77.

Program Unit
and Entry Name External References

DSFIT DBACC, DBSOL, DERV1, DSBASD, ERMSG, IERM1, IERV1
DSFITC DBLSE, DERV1, DSBASD, DSBASI, DSFIND, ERMOR, ERMSG,

IERM1, IERV1
DSVAL DSFIND, IERM1, IERV1
DSQUAD DSFIND, DSVAL
DSTOP DSDIF, DSVALA
DPVAL DSFIND
DPQUAD DSFIND

SSFIT SBACC, SBSOL, SERV1, SSBASD, ERMSG, IERM1, IERV1
SSFITC SBLSE, SERV1, SSBASD, SSBASI, SSFIND, ERMOR, ERMSG,

IERM1, IERV1
SSVAL SSFIND, IERM1, IERV1
SSQUAD SSFIND, SSVAL
SSTOP SSDIF, SSVALA
SPVAL SSFIND
SPQUAD SSFIND

DRDSFIT
c program DRDSFIT
c>> 1992-10-29 C. L. Lawson, JPL
c Demonstration driver for DSFIT, DSVAL, DSQUAD, DSTOP, DPVAL, DPQUAD
c --
c-- D version uses DRDSFIT, DSFIT, DSVAL, DSQUAD, DSTOP, DPVAL, DPQUAD
c--& DPRPL
c-- S version uses DRSSFIT, SSFIT, SSVAL, SSQUAD, SSTOP, SPVAL, SPQUAD
c--& SPRPL
c --
 integer I, IERR, NXY, KORDER, MPC, NCOEF, NDERIV, NPC, NT, LDW
 parameter(NXY = 12, NCOEF=8, KORDER=4, NT = NCOEF+KORDER,LDW = 10)
 parameter(MPC = NCOEF-KORDER+1)
 double precision BDIF, DSVAL, DSQUAD, DPVAL, DPQUAD
 double precision BCOEF(NCOEF), PCOEF(MPC*KORDER)
 double precision SD(1), SIGFAC, TKNOTS(NT), W(LDW,KORDER+1)
 double precision X(NXY), XI(MPC+1), Y(NXY), YFIT, Z

11.5-16 Least-Squares Data Fitting using Kth Order Splines with Constraints

 character IMAGE*31
 data X / 2.D0, 4.D0, 6.D0, 8.D0,10.D0,12.D0,
 * 14.D0,16.D0,18.D0,20.D0,22.D0,24.D0/
 data Y /2.2D0,4.0D0,5.0D0,4.6D0,2.8D0,2.7D0,
 * 3.8D0,5.1D0,6.1D0,6.3D0,5.0D0,2.0D0/
 data TKNOTS / 4*2.0D0, 6.4D0, 10.8D0, 15.2D0, 19.6D0, 4*24.0D0 /
 data NDERIV / 0 /
 data SD(1) / -1.0D0 /
c --
 print'(a)',' DRDSFIT',
 * ' Demo driver for DSFIT, DSVAL, DSQUAD, DSTOP, DPVAL, DPQUAD'
 print'(/a,i3,a,i3)',' KORDER =',KORDER,', NCOEF =',NCOEF
 print'(a,4f10.5/(14x,4f10.5))',' TKNOTS() = ',(TKNOTS(I),I=1,NT)
 call DSFIT(X, Y, SD, NXY, KORDER, NCOEF, TKNOTS, BCOEF,
 * SIGFAC, IERR, LDW, W)
 print'(/a/a,i5,a, f10.5 //a,4f10.5/(13x,4f10.5))',
 * ' After call to DSFIT:',
 * ' IERR =',IERR,', SIGFAC =',SIGFAC,
 * ' BCOEF() = ',(BCOEF(I),I=1,NCOEF)

 print'(/a)',' Evaluating fitted spline function using DSVAL:'
 print'(/a/) ',
 * ' I X Y YFIT R=Y-YFIT YFIT'

 do I=1,NXY ! Using Fortran 90 "DO" syntax.
 YFIT= DSVAL(KORDER, NCOEF, TKNOTS, BCOEF, X(I), NDERIV)
 call DPRPL(YFIT, '*', IMAGE, 31, 1.9d0, 6.3d0, .true.)
 print'(3x,i2,f6.0,2f9.3,f10.3,3x,a)',
 * I, X(I), Y(I), YFIT, Y(I)-YFIT, IMAGE
 enddo ! I

 Z = DSQUAD(KORDER, NCOEF, TKNOTS, BCOEF, 5.0d0, 20.0d0)
 print'(/a,f12.5)',' Integral from 5.0 to 20.0 using DSQUAD:',Z

 call DSTOP(KORDER, NCOEF, TKNOTS, BCOEF, BDIF, NPC, XI, PCOEF)
 print'(/a)',
 * ' Using DSTOP to convert from B-spline basis to power basis.'
 print'(a,i3)',' NPC =',NPC
 print'(a,4f10.5/(14x,4f10.5))',' XI() = ',(XI(I),I=1,NPC+1)
 print'(a,4f10.5/(14x,4f10.5))',
 * ' PCOEF() = ',(PCOEF(I),I=1,NPC*KORDER)

 print'(/a)',' Evaluating fitted spline function using DPVAL:'
 print'(/a/) ',
 * ' I X Y YFIT R=Y-YFIT YFIT'

 do I=1,NXY ! Using Fortran 90 "DO" syntax.
 YFIT= DPVAL(KORDER, NPC, XI, PCOEF, X(I), NDERIV)
 call DPRPL(YFIT, '*', IMAGE, 31, 1.9d0, 6.3d0, .true.)
 print'(3x,i2,f6.0,2f9.3,f10.3,3x,a)',
 * I, X(I), Y(I), YFIT, Y(I)-YFIT, IMAGE

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-17

 enddo ! I

 Z = DPQUAD(KORDER, NPC, XI, PCOEF, 5.0d0, 20.0d0)
 print'(/a,f12.5)',' Integral from 5.0 to 20.0 using DPQUAD:',Z
 end ! DRDSFIT

ODDSFIT
DRDSFIT
Demo driver for DSFIT, DSVAL, DSQUAD, DSTOP, DPVAL, DPQUAD

 KORDER = 4, NCOEF = 8
 TKNOTS() = 2.00000 2.00000 2.00000 2.00000
 6.40000 10.80000 15.20000 19.60000
 24.00000 24.00000 24.00000 24.00000

After call to DSFIT:
 IERR = 0, SIGFAC = 0.14664

 BCOEF() = 2.20672 3.33355 7.10955 0.91845
 4.88398 7.24971 5.03117 1.99475

Evaluating fitted spline function using DSVAL:

 I X Y YFIT R=Y-YFIT YFIT

 1 2. 2.200 2.207 -0.007 *
 2 4. 4.000 3.958 0.042 *
 3 6. 5.000 5.111 -0.111 *
 4 8. 4.600 4.430 0.170 *
 5 10. 2.800 2.959 -0.159 *
 6 12. 2.700 2.646 0.054 *
 7 14. 3.800 3.734 0.066 *
 8 16. 5.100 5.162 -0.062 *
 9 18. 6.100 6.132 -0.032 *
 10 20. 6.300 6.233 0.067 *
 11 22. 5.000 5.033 -0.033 *
 12 24. 2.000 1.995 0.005 *

Integral from 5.0 to 20.0 using DSQUAD: 66.54641

Using DSTOP to convert from B-spline basis to power basis.
 NPC = 5
 XI() = 2.00000 6.40000 10.80000 15.20000
 19.60000 24.00000
 PCOEF() = 2.20672 0.76829 0.11795 -0.03213
 5.13370 -0.05990 -0.30617 0.04307
 2.61122 -0.25290 0.26231 -0.02300
 4.61735 0.71946 -0.04132 -0.00801
 6.30079 -0.10933 -0.14704 -0.01148

Evaluating fitted spline function using DPVAL:

11.5-18 Least-Squares Data Fitting using Kth Order Splines with Constraints

 I X Y YFIT R=Y-YFIT YFIT

 1 2. 2.200 2.207 -0.007 *
 2 4. 4.000 3.958 0.042 *
 3 6. 5.000 5.111 -0.111 *
 4 8. 4.600 4.430 0.170 *
 5 10. 2.800 2.959 -0.159 *
 6 12. 2.700 2.646 0.054 *
 7 14. 3.800 3.734 0.066 *
 8 16. 5.100 5.162 -0.062 *
 9 18. 6.100 6.132 -0.032 *
 10 20. 6.300 6.233 0.067 *
 11 22. 5.000 5.033 -0.033 *
 12 24. 2.000 1.995 0.005 *

Integral from 5.0 to 20.0 using DPQUAD: 66.54641

DRDSFITC
c program DRDSFITC
c>> 1993-01-13 C. L. Lawson, JPL
c>> 1992-11-10 C. L. Lawson, JPL
c>> 1992-11-04 C. L. Lawson, JPL
c>> 1989-03-02 C. L. Lawson, JPL
c>> 1988-04-01 C. L. Lawson, JPL
c DRDSFITC.. Demo driver for DSFITC, Spline fit with constraints.
c The problem has 24 data points and 10 constraints.
c The spline is order 4 with 9 coefficients.
c --
c-- D version uses DRDSFITC, DSFITC, DSVAL, DPRPL, dble
c-- S version uses DRSSFITC, SSFITC, SSVAL, SPRPL, real
c --
 integer I, KORDER, KPRINT, MXY, MT
 integer NCOEF, NDATA, NINFO, NWORK
 parameter(NDATA = 24, MXY = NDATA+10)
 parameter(NINFO = 41, NWORK = 843)
 parameter(NCOEF=9, KORDER = 4, MT = NCOEF+KORDER)
 parameter(KPRINT = 0)
 integer INFO(NINFO), ISET(3)
 double precision DSVAL
 double precision BCOEF(NCOEF), BDIF(NCOEF*3), DELX, RNORM
 double precision SDI(MXY), SMAX, SMIN, SVALUE(0:2)
 double precision TKNOTS(NCOEF+KORDER)
 double precision WORK(NWORK), X, XI(MXY), YI(MXY), YFIT
 character CCODE(MXY+1)*4, IMAGE*49
 data TKNOTS / 4*0.0, 1.5, 2.5, 3.3, 4.0, 4.7, 4*6.0/
 data CCODE / 24*'10~a',
 * '10=a', '11>a', '12>a', '12>a', '12>a',
 * '12<a', '12<a', '12<a', '11>a', '10=a',
 * ' !'/
 data XI / 0.0, 0.3, 0.7, 1.0, 1.3, 1.7, 2.0, 2.3,

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-19

 * 2.5, 2.6, 2.8, 2.9, 3.0, 3.1, 3.2, 3.5,
 * 3.7, 4.0, 4.3, 4.7, 5.0, 5.3, 5.7, 6.0,
 * 0.0, 0.0, 0.0, 1.5, 2.5,
 * 3.5, 4.5, 6.0, 6.0, 6.0/

 data YI / 1.0, 1.1, 0.9, 1.02, 1.2, 1.0, 1.2, 1.4,
 * 1.76, 2.0, 2.4, 2.6, 3.0, 3.4, 3.7, 4.3,
 * 4.45, 4.76, 4.8, 5.0, 4.96, 4.9, 4.9, 5.0,
 * 1.0, 0.0, 0.0, 0.0, 0.0,
 * 0.0, 0.0, 0.0, 0.0, 5.0/

 data SDI(1) / -1.0D0 /
 data ISET / NINFO, NWORK, KPRINT /
c --
 print'(1x,a)','DRDSFITC.. Demo driver for DSFITC',
 * 'Least-squares polynomial spline fit to data with constraints.'
c
 print'(/a)',
 * ' I kind deriv relop active X Y'
 do I = 1,MXY
 print'(1x,i3,3x,a,7x,a,7x,a,7x,a,f12.3,f10.3)', I,
 * CCODE(I)(1:1),CCODE(I)(2:2),CCODE(I)(3:3),CCODE(I)(4:4),
 * XI(I),YI(I)
 enddo ! I
 I = MXY+1
 print'(1x,i3,3x,a,7x,a,7x,a,7x,a)', I,
 * CCODE(I)(1:1),CCODE(I)(2:2),CCODE(I)(3:3),CCODE(I)(4:4)
 print'(/a,i3,a,i3)',' KORDER =',KORDER,', NCOEF =',NCOEF
 print'(a,4f10.5/(14x,4f10.5))',' TKNOTS() = ',(TKNOTS(I),I=1,MT)
c
 call DSFITC(CCODE, XI, YI, SDI, KORDER, NCOEF, TKNOTS,
 * BCOEF, RNORM, ISET, INFO, WORK)
c
 print'(/a)',' After call to DSFITC:'
 print'(/3x,a,i6,a,i7,a,i7/ 3x,a,i6,a,i7,a,i7/ 3x,a,f12.5)',
 * 'IERR5 =',INFO(1),', NEED1 =',INFO(2),', NEED2 =',INFO(3),
 * 'M1 =',INFO(4),', MFIT =',INFO(5),', NS =',INFO(6),
 * 'RNORM =',RNORM
 print'(/a,4f10.5/(13x,4f10.5))',
 * ' BCOEF() = ',(BCOEF(I),I=1,NCOEF)
c
 call DSDIF(KORDER, NCOEF, TKNOTS, BCOEF, 2, BDIF)
 SMIN = 0.0d0
 SMAX = 0.0d0
 DELX = (XI(NDATA)-XI(1))/30.0D0
 X = XI(1)
 do I=0,31 ! Using Fortran 90 "DO" syntax.
 call DSVALA(KORDER, NCOEF, TKNOTS, 2, BDIF, X, SVALUE)
 SMIN = min(SMIN, SVALUE(0), SVALUE(1), SVALUE(2))
 SMAX = max(SMAX, SVALUE(0), SVALUE(1), SVALUE(2))
 X = X + DELX

11.5-20 Least-Squares Data Fitting using Kth Order Splines with Constraints

 enddo ! I
 print'(/a)',
 * ' X YFIT YFIT'' YFIT'''' '
 X = XI(1)
 do I=0,31 ! Using Fortran 90 "DO" syntax.
 call DSVALA(KORDER, NCOEF, TKNOTS, 2, BDIF, X, SVALUE)
 IMAGE = ' '
 call DPRPL(SVALUE(0), '*', IMAGE, 49, SMIN, SMAX, .false.)
 call DPRPL(SVALUE(1), '1', IMAGE, 49, SMIN, SMAX, .false.)
 call DPRPL(SVALUE(2), '2', IMAGE, 49, SMIN, SMAX, .false.)
 print'(1x,f6.3,f7.3,f7.3,f7.3,1x,a)',X, SVALUE, IMAGE
 X = X + DELX
 enddo ! I
c Compute and print residuals.
 print'(/a//a,a)',' Residuals at the data points:',
 * ' I XI(I) YI(I) YFIT YFIT-YI(I)',
 * ' YFIT-YI(I)'
 do I = 1, NDATA
 YFIT = DSVAL(KORDER, NCOEF, TKNOTS, BCOEF, XI(I), 0)
 call DPRPL(YFIT-YI(I), '*', IMAGE, 39, -0.18d0, 0.18d0, .true.)
 print'(1x,i4,f8.3,f8.3, f8.3, f10.3,1x,a)',
 * I, XI(I), YI(I), YFIT, YFIT-YI(I), IMAGE(1:39)
 enddo ! I
 end ! DRDSFITC

ODDSFITC

DRDSFITC.. Demo driver for DSFITC
Least-squares polynomial spline fit to data with constraints.

 I kind deriv relop active X Y
 1 1 0 ~ a 0.000 1.000
 2 1 0 ~ a 0.300 1.100
 3 1 0 ~ a 0.700 0.900
 4 1 0 ~ a 1.000 1.020
 5 1 0 ~ a 1.300 1.200
 6 1 0 ~ a 1.700 1.000
 7 1 0 ~ a 2.000 1.200
 8 1 0 ~ a 2.300 1.400
 9 1 0 ~ a 2.500 1.760
 10 1 0 ~ a 2.600 2.000
 11 1 0 ~ a 2.800 2.400
 12 1 0 ~ a 2.900 2.600
 13 1 0 ~ a 3.000 3.000
 14 1 0 ~ a 3.100 3.400
 15 1 0 ~ a 3.200 3.700
 16 1 0 ~ a 3.500 4.300
 17 1 0 ~ a 3.700 4.450
 18 1 0 ~ a 4.000 4.760
 19 1 0 ~ a 4.300 4.800
 20 1 0 ~ a 4.700 5.000
 21 1 0 ~ a 5.000 4.960

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-21

 22 1 0 ~ a 5.300 4.900
 23 1 0 ~ a 5.700 4.900
 24 1 0 ~ a 6.000 5.000
 25 1 0 = a 0.000 1.000
 26 1 1 > a 0.000 0.000
 27 1 2 > a 0.000 0.000
 28 1 2 > a 1.500 0.000
 29 1 2 > a 2.500 0.000
 30 1 2 < a 3.500 0.000
 31 1 2 < a 4.500 0.000
 32 1 2 < a 6.000 0.000
 33 1 1 > a 6.000 0.000
 34 1 0 = a 6.000 5.000
 35 !

 KORDER = 4, NCOEF = 9
 TKNOTS() = 0.00000 0.00000 0.00000 0.00000
 1.50000 2.50000 3.30000 4.00000
 4.70000 6.00000 6.00000 6.00000
 6.00000

After call to DSFITC:

 IERR5 = 0, NEED1 = 41, NEED2 = 843
 M1 = 10, MFIT = 24, NS = 8
 RNORM = 0.37206

 BCOEF() = 1.00000 1.01613 1.04300 1.07848
 4.07150 4.87706 4.92040 4.96864
 5.00000

 X YFIT YFIT' YFIT''
 0.000 1.000 0.032 0.000 2 *
 0.200 1.006 0.032 0.000 2 *
 0.400 1.013 0.032 0.000 2 *
 0.600 1.019 0.032 0.000 2 *
 0.800 1.026 0.032 0.000 2 *
 1.000 1.032 0.032 0.000 2 *
 1.200 1.039 0.032 0.000 2 *
 1.400 1.045 0.032 0.000 2 *
 1.600 1.052 0.052 0.395 1 2 *
 1.800 1.076 0.210 1.186 1 *2
 2.000 1.147 0.527 1.977 1 * 2
 2.200 1.297 1.001 2.768 1 * 2
 2.400 1.558 1.634 3.559 *1 2
 2.600 1.959 2.360 3.045 * 1 2
 2.800 2.480 2.787 1.225 2 *1
 3.000 3.049 2.850 -0.595 2 1*
 3.200 3.595 2.549 -2.414 2 1 *
 3.400 4.047 1.943 -3.064 2 1 *
 3.600 4.377 1.382 -2.543 2 1 *

11.5-22 Least-Squares Data Fitting using Kth Order Splines with Constraints

 3.800 4.606 0.926 -2.022 2 1 *
 4.000 4.755 0.573 -1.500 2 1 *
 4.200 4.842 0.317 -1.065 2 1 *
 4.400 4.887 0.147 -0.629 2 1 *
 4.600 4.907 0.065 -0.194 21 *
 4.800 4.919 0.059 0.022 2 *
 5.000 4.931 0.063 0.019 2 *
 5.200 4.944 0.066 0.015 2 *
 5.400 4.957 0.069 0.011 2 *
 5.600 4.971 0.071 0.007 2 *
 5.800 4.986 0.072 0.004 2 *
 6.000 5.000 0.072 0.000 2 *
 6.200 5.014 0.072 -0.004 2 *

Residuals at the data points:

 I XI(I) YI(I) YFIT YFIT-YI(I) YFIT-YI(I)
 1 0.000 1.000 1.000 0.000 *
 2 0.300 1.100 1.010 -0.090 * 0
 3 0.700 0.900 1.023 0.123 0 *
 4 1.000 1.020 1.032 0.012 0*
 5 1.300 1.200 1.042 -0.158 * 0
 6 1.700 1.000 1.060 0.060 0 *
 7 2.000 1.200 1.147 -0.053 * 0
 8 2.300 1.400 1.412 0.012 0*
 9 2.500 1.760 1.740 -0.020 * 0
 10 2.600 2.000 1.959 -0.041 * 0
 11 2.800 2.400 2.480 0.080 0 *
 12 2.900 2.600 2.763 0.163 0 *
 13 3.000 3.000 3.049 0.049 0 *
 14 3.100 3.400 3.330 -0.070 * 0
 15 3.200 3.700 3.595 -0.105 * 0
 16 3.500 4.300 4.226 -0.074 * 0
 17 3.700 4.450 4.503 0.053 0 *
 18 4.000 4.760 4.755 -0.005 *0
 19 4.300 4.800 4.869 0.069 0 *
 20 4.700 5.000 4.913 -0.087 * 0
 21 5.000 4.960 4.931 -0.029 * 0
 22 5.300 4.900 4.950 0.050 0 *
 23 5.700 4.900 4.978 0.078 0 *
 24 6.000 5.000 5.000 0.000 *

Least-Squares Data Fitting using Kth Order Splines with Constraints 11.5-23

11.6 Low-level Subprograms for Operations on Splines Functions

A. Purpose
This chapter describes five subprograms for spline operations that are used by the subprograms
of the preceding chapter. It is expected that one would only use these subprograms directly if
one has needs more specialized than are covered by the higher level subprograms of the
preceding chapter.

Subroutine DSVALA evaluates at an argument X the values of the derivatives, of orders 0
through NDERIV, of a spline function represented using the B-spline basis. DSVALA must be
given a difference table of the coefficients of the spline function. Subroutine DSDIF is provided
to compute this difference table. Once the difference table has been computed and saved, use of
DSVALA is more economical than making NDERIV+1 calls to subprogram DSVAL of the
preceding chapter if NDERIV > 0.

Subroutine DSFIND does a lookup in a knot array to find a knot subinterval of nonzero length
containing a specified argument X, or the nearest such subinterval if extrapolation is needed.

Using a knot sequence regarded as defining a B-spline basis function of order KORDER,
subroutine DSBASD computes the values at X of the KORDER B-spline basis functions (or a
derivative of these functions as specified by IDERIV) that could be nonzero at X. Subprogram
DSBASI computes the integral from X1 to X2 of each of the NCOEF basis functions. The output
of these subprograms is needed in setting up the matrix for curve fitting or interpolation
involving values, derivatives, or integrals of the fitted spline function.

B. Usage

B1. Usage of DSBASD for Evaluation of Basis Functions or Their Derivatives
Program Prototype, Double Precision

INTEGER KORDER, LEFT, IDERIV
DOUBLE PRECISION TKNOTS(≥ncoef+KORDER), X, BDERIV(≥KORDER)

Assign values to KORDER, LEFT, TKNOTS, X, and IDERIV.

CALL DSBASD(KORDER, LEFT, TKNOTS, X, IDERIV, BDERIV)

Computed quantities are returned in BDERIV().

Argument Definitions
KORDER [in] KORDER is both the order of the spline basis functions and the number of basis

functions whose derivatives are to be evaluated.

LEFT [in] Identifies an interval of nonzero length [TKNOTS(LEFT), TKNOTS(LEFT+1)]
which is the reference interval for the function evaluation. DSBASD will evaluate the
IDERIVth derivative of the KORDER basis functions that could be nonzero on this interval.
Require KORDER ≤ LEFT ≤ ncoef. Except when extrapolation is needed, LEFT should
satisfy TKNOTS(LEFT) ≤ X < TKNOTS(LEFT+1). We recommend that the subroutine
DSFIND be used to determine LEFT.

TKNOTS() [in] The knots, t
i
, i = 1, ..., ncoef+KORDER, where ncoef denotes the total number

of B-spline basis functions associated with this knot sequence. The proper interpolation
interval, [a,b], associated with this knot sequence is given by a = TKNOTS(KORDER) and
b = TKNOTS(ncoef+1). Require t

i
 ≤ t

i+1
 for i = 1, ..., ncoef+KORDER-1; t

i
 < t

i+KORDER
 for i =

Low-level Subprograms for Operations on Spline Functions 11.6-1

1, ..., ncoef; t
KORDER+1

 > t
KORDER

; t
ncoef

 < t
ncoef+1

. The knots strictly between a and b are
internal knots. They specify abcissae at which one polynomial piece ends and the next
begins. Successive internal knots may have the same value. An abcissa appearing with
multiplicity µ means the order of continuity of the spline at this abcissa will be at least
KORDER-µ-1. The knots indexed ahead of t

KORDER
 can all be equal to a, and those indexed

after t
ncoef+1

 can all be equal to b.

X [in] Argument at which the IDERIVth derivative of basis functions are to be
evaluated.

IDERIV [in] Order of derivative to be computed. IDERIV = 0 specifies function values.
Require IDERIV ≥ 0. Values of derivatives of order ≥ KORDER will be zero.

BDERIV()[out] On return the values at X of the IDERIVth derivative of the basis functions
indexed from LEFT+1-KORDER through LEFT will be stored in BDERIV(i), i = 1, ...,
KORDER.

B2. Usage of DSBASI for Evaluation of an Integral of Basis Functions

Program Prototype, Double Precision
INTEGER KORDER, NCOEF, J1, J2
DOUBLE PRECISION TKNOTS(≥NCOEF+KORDER), X1, X2, BASI(≥NCOEF)

Assign values to KORDER, NCOEF, TKNOTS(), X1, X2, J1, and J2.

CALL DSBASI (KORDER, NCOEF, TKNOTS, X1, X2, J1, J2, BASI)

Computed results are returned in J1, J2, and BASI().

Argument Definitions
KORDER [in] The the order of the spline basis functions.

NCOEF [in] The total number of B-spline basis functions associated with this knot sequence.
Also the number of values to be returned in BASI().

TKNOTS() [in] The knots, t
i
, i = 1, ..., NCOEF+KORDER. The proper interpolation interval,

[a,b], associated with this knot sequence is given by a = TKNOTS(KORDER) and b =
TKNOTS(NCOEF+1). Require t

i
 ≤ t

i+1
 for i = 1, ..., NCOEF+KORDER-1; t

i
 < t

i+KORDER
 for i

= 1, ..., NCOEF; t
KORDER+1

 > t
KORDER

; t
NCOEF

 < t
NCOEF+1

. The knots strictly between a and b
are internal knots. They specify abcissae at which one polynomial piece ends and the next
begins. Successive internal knots may have the same value. An abcissa appearing with
multiplicity µ means the order of continuity of the spline at this abcissa will be at least
KORDER-µ-1. The knots indexed ahead of t

KORDER
 can all be equal to a, and those indexed

after t
NCOEF+1

 can all be equal to b.

X1, X2 [in] Integration is to be done from X1 to X2. Permit X1 < X2 or X1 ≥ X2. Generally X1
and X2 should each lie in [a,b], however extraploation will be used to return values when
this is not the case.

J1, J2 [inout] On entry, J1 and J2 must contain integer values. If J1 is in [1, N], it will be
used to start the lookup for X1. Otherwise the search will start with 1. Similarly for J2.

On return, J1 and J2 indicate the portion of the array BASI() that might be nonzero on
return. BASI(i) might be nonzero if J1 ≤ i ≤ J2, and BASI(i) = 0 if i < J1 or i > J2.

11.6-2 Low-level Subprograms for Operations on Spline Functions

BASI() [out] On return, BASI(i) will contain the value of the integral of the ith basis function
over the range from X1 to X2, for i = 1, ..., NCOEF. J1 and J2 above indicate which
elements might be nonzero.

B3. Usage of DSDIF to Compute the Difference Table Needed by
DSVALA

Program Prototype, Double Precision
INTEGER KORDER, NCOEF, NDERIV
DOUBLE PRECISION TKNOTS(≥NCOEF+KORDER), BCOEF(≥NCOEF),

BDIF(≥NCOEF*(NDERIV+1))

Assign values to KORDER, NCOEF, TKNOTS(), BCOEF(), and NDERIV.

CALL DSDIF (KORDER, NCOEF, TKNOTS, BCOEF, NDERIV, BDIF)

Computed results are returned in BDIF().

Argument Definitions
KORDER [in] The the order of the spline basis functions.

NCOEF [in] The total number of B-spline basis functions associated with this knot sequence.

TKNOTS() [in] Same specifications as for DSBASI above.

BCOEF() [in] Array of NCOEF coefficients representing a spline function relative to a B-spline
basis.

NDERIV [in] Highest order difference to be computed. Since the difference table BDIF() is
intended for use by DSVALA, this should correspond to the largest order derivative one
intends to compute using DSVALA.

BDIF() [out] Will contain a copy of BCOEF() plus differences through order NDERIV of this
array of coefficients. Intended for use by DSVALA.

B4. Usage of DSFIND for Lookup in a Knot Sequence

Program Prototype, Double Precision
INTEGER IX1, IX2, LEFT, MODE
DOUBLE PRECISION XT(IX2+1), X

Assign values to XT(), IX1, IX2, LEFT, and X.

CALL DSFIND(XT, IX1, IX2, X, LEFT, MODE)

Results are returned in LEFT and MODE.

Argument Definitions
XT(), IX1, IX2 [in] XT() is the array in which the lookup will be done. DSFIND will only look at

elements from XT(IX1) through XT(IX2). Require IX1 < IX2, XT(IX1) < XT(IX1+1),
XT(IX2-1) < XT(IX2), and XT(i) ≤ XT(i+1) for i = IX1, ..., IX2-1.

Low-level Subprograms for Operations on Spline Functions 11.6-3

If the lookup is in a knot array of length korder+ncoef associated with a B-spline basis, one
would generally set IX1 = korder and IX2 = ncoef+1. If the lookup is in a knot array of length
npc+1 associated with a power basis, one would generally set IX1 = 1 and IX2 = npc+1.

X [in] Value to be looked up in XT().

LEFT [inout] On entry LEFT must contain an integer value. If this value is in [IX1, IX2-1]
the lookup will start with this value, otherwise the lookup starts with IX1 or IX2-1.

On return LEFT is the index of the left end of the reference interval 〈 X(LEFT), X(LEFT+1) 〉
for X. This will always be an interval of nonzero length. If X satifies X(IX1) ≤ X < X(IX2)
then LEFT will satisfy X(LEFT) ≤ X < X(LEFT+1). Otherwise, if X < X(IX1), LEFT := IX1;
or if X ≥ X(IX2), LEFT := IX2-1. The polynomial segment defined over this reference
interval is intended to be used for function evaluation at X.

MODE [out] Indicator of the position of X relative to [XT(IX1), XT(IX2)]. Set to -1 if X is to
the left of this interval, to 0 if X is in this closed interval, and to +1 if X is to the right of
this interval.

B5. Usage of DSVALA for Evaluation a Sequence of Derivatives

Program Prototype, Double Precision
INTEGER KORDER, NCOEF, NDERIV
DOUBLE PRECISION TKNOTS(≥NCOEF+KORDER), BDIF(≥NCOEF*(NDERIV+1)),

X, SVALUE(≥NDERIV+1)

Assign values to KORDER, NCOEF, TKNOTS(), NDERIV, BDIF(), and X.

CALL DSVALA(KORDER, NCOEF, TKNOTS, NDERIV, BDIF, X, SVALUE)

Computed results are returned in SVALUE().

Argument Definitions
KORDER [in] The the order of the spline basis functions.

NCOEF [in] The total number of B-spline basis functions associated with this knot sequence.

TKNOTS() [in] Same specifications as for DSBASI above.

NDERIV [in] Highest order derivative to be evaluated. Values of derivatives of order ≥
KORDER will be zero.

BDIF() [in] A difference table of B-spline coefficients computed by DSDIF.

X [in] Argument at which values returned in SVALUE() are to be computed.

SVALUE() [out] On return, SVALUE(i+1) contains the value at X of the ith derivative of
the spline function f for i = 0, ..., NDERIV. The spline function f is defined by the
parameters KORDER, NCOEF, TKNOTS(), and the coefficients whose difference table in
in BDIF().

B6. Modifications for Single Precision

For single precision usage change the DOUBLE PRECISION statements to REAL and change the
initial "D" in the subprogram names to "S".

C. Examples and Remarks

11.6-4 Low-level Subprograms for Operations on Spline Functions

The program DRDSBASD and output listing ODDSBASD demonstrate the use of the
subprograms of this chapter.

D. Functional Description
The subprograms of this chapter are covered in Section D of Chapter 11.5.

References
1. Carl de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.

2. D. E. Amos, Sandia report SAND79-1825, Sandia Laboratory, Albuquerque, June, 1979.

E. Error Procedures and Restrictions
DSBASD, DSBASI, and DSVALA each contain an internal dimensioning parameter kmax = 20.
It is an error if KORDER > kmax in DSBASI, DSBASI, or DSVALA. The condition IDERIV < 0 is
an error in DSBASD.

In DSFIND, if the search reaches either of the intervals [XT(IX1), XT(IX1+1)] or [XT(IX2-1),
XT(IX2)] and the interval is found to have nonpositive length, the error is reported.

In each of the above cases the error is reported to the library error message processing
subroutines of Section 19.2 with a severity level of 2 that will, by default, cause execution of the
program to stop.

Abcissae and weights for 2-point, 6-point, and 10-point Gaussian quadrature are stored to 40
decimal digits in DSBASI. With infinite precision abcissae and weights, these formulae would be
exact for splines of KORDER up to 20.

F. Supporting Information

The source language is ANSI Fortran 77.

Program Unit
and Entry Name External References
DSBASD IERM1, IERV1
DSBASI DSBASD, DSFIND
DSDIF none
DSFIND DERV1, IERM1
DSVALA DSBASD, DSFIND

SSBASD IERM1, IERV1
SSBASI SSBASD, SSFIND
SSDIF none
SSFIND SERV1, IERM1
SSVALA SSBASD, SSFIND

DRDSBASD
 program DRDSBASD
c>> 1993-01-12 CLL @ JPL
c>> 1992-11-12 CLL @ JPL
c>> 1992-11-04 CLL @ JPL
c Demo driver for DSBASD, DSBASI, DSDIF, DSFIND, DSVALA.
c --
c-- D version uses DRDSBASD, DSBASD, DSBASI, DSDIF, DSFIND, DSVALA
c-- S version uses DRSSBASD, SSBASD, SSBASI, SSDIF, SSFIND, SSVALA

Low-level Subprograms for Operations on Spline Functions 11.6-5

c --
 integer I, IDERIV, J1, J2, KORDER, LEFT, MODE, NCOEF, NDERIV
 parameter(KORDER = 4, NCOEF = 6)
 parameter(IDERIV = 2, NDERIV = 3)
 double precision BASI(NCOEF), BCOEF(NCOEF), BDERIV(KORDER)
 double precision BDIF(NCOEF*(NDERIV+1)), BVALS(KORDER)
 double precision SVALUE(NDERIV+1)
 double precision TKNOTS(KORDER+NCOEF), X, X1, X2
 parameter(X = 0.4d0 , X1 = 0.1d0, X2 = 0.9d0)
 data TKNOTS / 4*0.0d0, 0.3d0, 0.8d0, 4*1.0d0 /
 data BCOEF / 0.1d0, 0.4d0, 0.2d0, -0.3d0, -0.5d0, -0.2d0 /
c --
 print'(a/a/3x,a,i2,a,i2/3x,a,10f5.1)',
 * ' DRDSBASD.. Demo driver for',
 * ' DSBASD, DSBASI, DSDIF, DSFIND, DSVALA.',
 * ' KORDER =',KORDER,', NCOEF =',NCOEF,
 * ' TKNOTS() =',(TKNOTS(I),I=1,KORDER+NCOEF)
 print'(a,f5.1)',' Using DSFIND with X = ', X
 LEFT = 1
 call DSFIND(TKNOTS, KORDER, NCOEF+1, X, LEFT, MODE)
 print'(3x,a,i2,a,i2)',' LEFT = ',LEFT,', MODE =',MODE
 print*,'Using DSBASD with IDERIV = 0'
 call DSBASD(KORDER, LEFT, TKNOTS, X, 0, BVALS)
 print'(3x,a,i2,a,i2/6x,4f12.6)',
 * ' Values at X of basis functions indexed from ',
 * LEFT+1-KORDER,' to ', LEFT, (BVALS(I),I=1,KORDER)
 print'(a,i2)',' Using DSBASD with IDERIV =',IDERIV
 call DSBASD(KORDER, LEFT, TKNOTS, X, IDERIV, BDERIV)
 print'(3x,a,i2,a,i2/6x,4f12.5)',
 * ' Values at X of 2nd deriv of basis functions indexed from ',
 * LEFT+1-KORDER,' to ', LEFT, (BDERIV(I),I=1,KORDER)
 print'(a,f5.1,a,f5.1)',
 * ' Using DSBASI with X1 = ', X1,' and X2 = ',X2
 J1 = 1
 J2 = 1
 call DSBASI(KORDER, NCOEF, TKNOTS, X1, X2, J1, J2, BASI)
 print'(3x,a,i2,a,i2/3x,a/3x,6f11.6)',' J1 =',J1,', J2 =',J2,
 * ' Integrals from X1 to X2 of basis functions:',
 * (BASI(I),I=1,NCOEF)
 print'(a,i2,a/3x,a,6f5.1)',
 * ' Using DSDIF and DSVALA with NDERIV =',NDERIV,' and',
 * ' BCOEF() = ', (BCOEF(I),I=1,NCOEF)
 call DSDIF(KORDER, NCOEF, TKNOTS, BCOEF, NDERIV, BDIF)
 call DSVALA(KORDER, NCOEF, TKNOTS, NDERIV, BDIF, X, SVALUE)
 print'(3x,a,i2,a/6x,4f11.6)',
 * ' Values of derivs 0 through ',NDERIV,' at X: ',
 * (SVALUE(I),I=1,NDERIV+1)
 end

ODDSBASD

11.6-6 Low-level Subprograms for Operations on Spline Functions

DRDSBASD.. Demo driver for
 DSBASD, DSBASI, DSDIF, DSFIND, DSVALA.
 KORDER = 4, NCOEF = 6
 TKNOTS() = 0.0 0.0 0.0 0.0 0.3 0.8 1.0 1.0 1.0 1.0
Using DSFIND with X = 0.4
 LEFT = 5, MODE = 0
Using DSBASD with IDERIV = 0
 Values at X of basis functions indexed from 2 to 5
 0.200000 0.542857 0.253061 0.004082
Using DSBASD with IDERIV = 2
 Values at X of 2nd deriv of basis functions indexed from 2 to 5
 7.50000 -11.78571 1.83673 2.44898
Using DSBASI with X1 = 0.1 and X2 = 0.9
 J1 = 1, J2 = 6
 Integrals from X1 to X2 of basis functions:
 0.014815 0.163874 0.246236 0.244080 0.127870 0.003125
Using DSDIF and DSVALA with NDERIV = 3 and
 BCOEF() = 0.1 0.4 0.2 -0.3 -0.5 -0.2
 Values of derivs 0 through 3 at X:
 0.110612 -1.181633 -1.132653 7.423469

Low-level Subprograms for Operations on Spline Functions 11.6-7

11.6-8 Low-level Subprograms for Operations on Spline Functions

